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a b s t r a c t

Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe
intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme
events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water
quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily
scale would be of good help for timely river pollution management. This study proposes a systematic
analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and
construct water quality estimation models using two static and one dynamic artificial neural networks
(ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The
Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3eN) is considered as the repre-
sentative parameter, a correlative indicator in judging the contamination level over the study. Key factors
the most closely related to the representative parameter (NH3eN) are extracted by the Gamma test for
modeling NH3eN concentration, and as a result, four hydrological factors (discharge, days w/o discharge,
water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that
the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connec-
tions can accurately estimate NH3eN concentration with a very high coefficient of efficiency value
(0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values
that mainly occur in dry periods (SeptembereApril in the study area), which is particularly important to
water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the
spatio-temporal NH3eN concentration based solely on hydrological data, without using water quality
sampling data. It is worth noticing that such estimation can be made in a much shorter time interval of
interest (span from a monthly scale to a daily scale) because hydrological data are long-term collected in
a daily scale. The proposed SAS favorably makes NH3eN concentration estimation much easier (with only
hydrological field sampling) and more efficient (in shorter time intervals), which can substantially help
river managers interpret and estimate water quality responses to natural and/or manmade pollution in a
more effective and timely way for river pollution management.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Water quality has deteriorated in most of the major rivers in
western Taiwan over the past decades in consequence of urbani-
zation, industrialization and population growth along rivers. Sea-
sonal variations of river flows have also undergone drastic changes
due to hydrological and geological characteristics of river basins.
x: þ886 2 23635854.
Pollutants leak from various sources and accumulate with sedi-
ments in river beds. In drought seasons, water levels in general are
very low and flows barely occur in river channels. As a conse-
quence, river pollution becomes even worse. On the other hand,
during wet seasons, sudden changes in river flow may rinse river
beds, deposit particles of sediments and contaminants, and thus
river water quality seriously deteriorates and ecosystems
encounter huge impacts (Ko et al., 2010). Hydrological character-
istics significantly influence the ecological sustainability of aquatic
river systems and cause heavy casualties on fishes, shellfishes and
mollusks in downstream industries and coastal cultivation in
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Fig. 1. Study flow of the proposed systematic analysis scheme (SAS).
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Taiwan (Chang et al., 2013). Water pollution is a crucial problem in
the Dahan River (our study area) because many industrial facilities
as well as densely populated cities are located along the river in
recent decades and uneven dilution as well as transportation of
pollutants frequently occurs in the water body of the river. The
incessant accumulation of pollutants and nutrients deteriorates
river water quality and exhausts dissolved oxygen in the river
(Chiu, 2011). Yang et al. (2009) applied the WASP/EUTOR model to
evaluating a number of alternatives onwastewater management in
the downstream of the Dahan River for river restoration with an
improvement on the assimilative capacity of biochemical oxygen
demand and dissolved oxygen.

Water quality models are useful tools for estimating the impacts
and risks of chemical pollutants in a water body (Chapra, 2008;
Feng et al., 2013). Water quality models can be classified into
physically-based or statistical approaches. Physically-based ap-
proaches have progressively proved successful and useful in
learning the mechanisms of underlying processes; nevertheless,
they are usually site-specific and require substantially detailed
water quality measurements and/or extensive surveys for calibra-
tion, which bear certain time and budget limitation. With the
development of model theory and the fast-updated computer
techniques, more water quality models have been explored with
various statistical methods to overcome data scarcity and simul-
taneously increase model reliability. Either statistical approaches,
such as linear regression (Rothwell et al., 2010); factor analysis
technique (Ouyang et al., 2000), or artificial neural networks
(ANNs) models based on data driven techniques (Unwin et al.,
2010; He et al., 2011) can be applied to the monitored time-series
of hydrological and water quality measurements for simulation
and/or prediction purposes. ANNs are computational techniques
inspired by the brain and nerve systems in biological organisms,
and they can tackle large-scale complex problems. ANNs have also
been applied with success to diverse fields of environment sciences
(Coz et al., 2009; McNamara et al., 2008; Yesilnacar et al., 2008;
Singh et al., 2009; Chang et al., 2010; Giri et al., 2011; Hattab
et al., 2013; Jiang et al., 2013; Tsai. et al., 2014). A majority of
studies were dedicated to exploring the applicability of static ANNs,
such as the back propagation neural network (BPNN) and the
adaptive network-based fuzzy inference system (ANFIS). Never-
theless, the natural characteristics of hydrogeological processes are
complex and dynamic. Static neural networks might fail to properly
predict the dynamical features of hydrogeological processes, such
that the delivered relationship might be simply the possible im-
pacts of factors on the temporal characteristics of local environ-
ments (Chang et al., 2013; Chen et al., 2013). Consequently, the
comprehensive analysis on the dynamic features of hydro-
geological processes and the modeling of tempo-spatial water
quality variations remain a great challenge that needs to be
overcome.

Environmental sampling is very complicated, laborious, costly
and time-consuming. It is unlikely to have continuous long-term
water-quality time series data with complete properties at all
sampling locations in a river system. Another great challenge for
river managers in pollution assessment is the investigation of
pollution patterns with high complexity, dynamism and non-
linearity in both spatial and temporal scales (Carafa et al., 2007).
Management tools require predictive methods or models to relate
water quality with hydrological responses, catchment characteris-
tics and/or human activities. We attempt to estimate water quality
concentration in shorter time intervals of interest, without con-
ducting water quality field sampling. The proposed scheme com-
prises artificial neural networks, factor selection and statistics
techniques for a comprehensive assessment of river water quality
in responses to natural and human activities over the study basin.
2. Methods

This study formulates a systematic analysis scheme (SAS) for
assessing the spatio-temporal water quality by artificial intelligence
and statistics techniques based on water quality, hydrological and
economic data (Fig. 1). A preliminary analysis is conducted through
the correlation coefficient analysis to identify the representative
water quality parameter (i.e., a correlative indicator of the
contamination level over the study area). Three ANNs (BPNN-a
classical ANN; ANFIS-a neuro-fuzzy network; and NARX-a dynamic
ANN) coupled with the Gamma test (for factor selection) and cross-
validation (for data scarcity) are used for modeling the concentra-
tion of the representative water quality parameter. The merits of
the main methodologies are briefly addressed as follows:

2.1. Gamma test (GT) - factor selection

The use of input selection methods assist in selecting the com-
bination of explanatory variables best suit a model. The proper
selection of input variables can improve prediction performance
and help understand the processes that resulted in the observed
data (Guyon and Elisseeff, 2003). The current study involves water
quality, hydrological and economic factors with data sets limited in
size, and therefore there is a need to utilize effective input selection
methods to characterize the appropriate inputeoutput relation-
ships. The GT, presented by Agalbjorn et al. (1997), is used to esti-
mate the noise level in a data set without assuming any parametric
form of equations that govern the system. The only requirement is
that the system should be governed by a smooth function because
the GT will exploit the hypothesized continuity of this governing
function. Performing a single GT is a fast procedure, which can
provide the noise estimate for each subset (combination) of input
variables. If a subset's associated noise estimate (G value) is the
closest to zero, it can be considered as the “best combination” of
inputs. Recent applications noted that ANNs combined with the GT
can obtain accurate estimation based on the identified non-trivial
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input variables (Chang et al., 2013; Moghaddamnia et al., 2009;
Noori et al., 2011). Therefore, the GT is utilized to extract the key
factors for the ANN estimation models in this study.
2.2. Nonlinear autoregressive with eXogenous input (NARX)
network e estimation tool

Neural networks possess the ability to approximate nonlinear
functions and are valuable tools for modeling time series; however,
static neural networks may not establish reliable nonlinear models
for predicting dynamical systems and their generalization capa-
bility may not satisfy the accuracy and robustness requirement
(Shen and Chang, 2012; Chang et al., 2014). Lacking accurate true
values makes it difficult to train and construct reliable prediction
models. Many engineering problems require models to recover
missing data and/or predict into the future without the availability
of measurements in the horizon of interest. To assess the models'
reliability under this circumstance and determine themost suitable
estimation model, two famous static ANNs (BPNN and ANFIS) and
one dynamic ANN (NARX) are constructed and validated in this
study.

The NARX network proposed by Lin et al. (1996) is an important
class of nonlinear discrete-time systems and has two tapped-delay
elements produced from input and output layers. Fig. 2 shows the
architecture of the NARX network, which consists of three layers
(input, hidden and output layers) and the recurrent connections
from the output may delay several unit times to form new inputs.
This nonlinear system can be mathematically presented by the
following equation:

zðtÞ ¼ f ½zðt � 1Þ;…; zðt � dzÞ;UðtÞ� (1)

where U(t) and z(t) denote the input vector and output value of the
model at a discrete time step t, respectively. And f(‧) is the nonlinear
function that needs to be approximated by a learning algorithm.
When the NARX network needs to be trained, it can be realized in
one out of the following two modes. The first mode is the Series-
parallel (SP) mode, where the output's regressor in the input
layer is formed only by actual values of the system's output, d(t):

zðtÞ ¼ f ½dðt � 1Þ;…; zðt � dzÞ;UðtÞ� (2)

The other alternative is the Parallel (P) mode, where estimated
outputs are fed back into the output's regressor in the input layer
and can bemathematically represented as Eq. (1). It is common that
a model adopted to estimate target variables in unrecorded periods
often has poor performance because the information of target
variables is not always available. Therefore, the NARX network can
Fig. 2. Architecture of the NARX network without recurrent connections from input-
delay terms.
be trained in the SP mode to construct the relationship between
actual and estimated values of the target variable. Then the con-
structed NARX network in the P mode is applied to the unrecorded
period for improving estimation performance with the recurrent
information (the estimated values derived from the model). This
approach would enhance the estimation accuracy and has practical
meaning and functions when dealing with the estimation of target
variables in unrecorded periods.

2.3. Cross validation - tackling data scarcity

With data sets limited in size, cross-validation, which partitions
observed data into training and testing sets, is commonly used to
obtain a reliable estimate of the test error for performance esti-
mation or for use as a model selection criterion. For the k-fold
cross-validation, the first step is to assign a model parameter
setting (i.e., the initial weights, the epoch number, the number of
neurons in the hidden layer and the output-memory orders of the
ANN), and then the original sample is partitioned into k sub-
samples. Among the k subsamples, a single subsample is retained
as validation data and the remaining k-1 subsamples are used as
training data. The cross-validation process is then repeated k times,
with each of the k subsamples being used exactly once as validation
data. Cross validation can produce a low-bias estimator for the
generalization properties of statistical models, and therefore pro-
vides a sensible criterion for model selection and performance
comparison, especially for samples that are hazardous, costly or
difficult to collect, such as the water quality data collected in this
study.

3. Application

The Dahan River has encountered water deterioration, particu-
larly in the mid- and downstream zones in recent years, as a cost of
rapid urbanization and industrialization. This study attempts to
highlight the representative water quality parameter of this area
and reliably estimate its concentration with relatively effortless
factors for environmental assessment and pollution management.

3.1. Study area

The Dahan River is located in the upstream of the Danshuei
River in northwestern Taiwan (Fig. 3). It is 135 km long and oc-
cupies a catchment area of 1163 km2 with complex land uses
involving industrialization, agriculture, urbanization, native vege-
tation and conservation. Its river basin embraces the densely
populated New Taipei City and the Taoyuan County, in which
wastewater of households, livestock husbandries and industrial
plants infiltrates into the river basin for decades. The Dahan River
has become one of the most contaminated rivers in northern
Taiwan. Several important hydraulic facilities were built along the
river: the Shihmen Reservoir (upstream); the Yuanshan Weir
(midstream); and the BansinWater Intake Plant (downstream). The
Yuanshan Weir impounds water from the Shihmen Reservoir and
releases water to the BansinWater Intake Plant for water regulation
purpose.

3.2. Data collection and pre-processing

Government-owned water quality monitoring stations have
been set up along the main rivers in Taiwan for decades. Various
water quality surveys on (heavy) metals and nutrients in rivers and
reservoirs have been carried out by the Environmental Protection
Administration of Taiwan (TWEPA) since 2002. Water quality data
for use in this study were collected at seven water quality



Fig. 3. Dahan River basin with seven water quality monitoring stations and three rainfall gauge stations: upstream zone (S1eS3); and downstream zone (S4eS7).
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monitoring stations (S1eS7 in Fig. 3) from June 2002 to June 2012.
Monthly data are in association with nine water quality parame-
ters: acidity (pH); electro conductivity (EC); dissolved oxygen (DO);
biochemical oxygen demand (BOD); chemical oxygen demand
(COD); suspended solid (SS); coliform group (Coliform); ammonia
nitrogen (NH3eN); and water temperature (temp). Quarterly data
correspond to five water quality parameters: total organic carbon
(TOC); total phosphorous (TP); total nitrogen (TN); nitrate nitrogen
(Nitrate); and nitrite nitrogen (Nitrite). Table 1 displays the pre-
liminary statistics of water quality data, which indicate the water
quality of the water body varies greatly according to the large
standard deviations and the big differences betweenmaximum and
minimum concentrations of these parameters.

In addition to water quality parameters, hydrological and eco-
nomic factors are incorporated into this study for a broad
Table 1
Basic statistics of water quality data obtained from seven monitoring stations along
the Dahan River (June 2002eJune 2012).

Parameters unit min max Mean SDa Data
quantity

Monthly
pH 6.4 10.4 7.9 0.5 840
EC mmho/cm

25 �C
146 1730 411 241 840

DO mg/l 0 15.8 6.7 3.2 840
BOD mg/l 1 34.9 4.5 5 840
COD mg/l 4 551 21.4 36.4 840
SS mg/l 2.2 24,600 493 1977 840
Coliform CFU/100 ml 10 68,000,000 558,049 3,003,180 840
NH3eN mg/l 0 18.8 1.8 3 840
temp �C 10 34.7 22.8 5.3 840
Quarterly
TOC mg/l 0.71 16.3 4.07 3.09 203
TP mg/l 0.006 6.88 0.402 0.739 280
TN mg/l 0.3 21.12 3.92 4.39 126
Nitrate mg/l 0.01 3.01 0.79 0.58 280
Nitrite mg/l 0.001 0.942 0.122 0.161 280

a Standard deviation.
assessment on the influential factors of water quality in the study
area. Hydrological factors consist of the discharge from the Yuan-
shan Weir and the rainfall of three gauge stations (R1-R3) nearby
the Dahan River channel (Fig. 3). Discharge data were obtained
from the Bansin Water Intake Plant of Taiwan Water Corporation,
while rainfall data were collected from the Central Weather Bureau
(CWB) and the Water Resources Agency (WRA), Taiwan. Subject to
the availability of discharge data collected at the Yuanshan Weir
(2004e2011), the modeling period is 2004e2011, instead of
2002e2012 (the period of available water quality data). In the pre-
processing stage, rainfall and discharge data are designed into
various time series to explore their time lag effects on the repre-
sentative water quality parameter.

3.3. Model construction

Fig. 1 illustrates the flowchart of this study. In the preliminary
analysis, the representative water quality parameter (i.e., a correl-
ative indicator in judging the contamination level over the study
area) is identified by the correlation coefficient analysis on water
quality parameters and hydrological factors, respectively. Then, two
static ANNs (BPNN and ANFIS) and one dynamic ANN (NARX)
coupled with the GT are used to build the concentration estimation
models of the representative water quality parameter. The GT is
used to select the most suitable combination of factors from water
quality, hydrological and economic fields as model inputs. During
model construction, each neural network is calibrated by a 14-fold
cross validation in consideration of data scarcity (96 data in total).
The BPNN and the NARX are trained with the Lev-
enbergeMarquardt optimization algorithm while the ANFIS is
trained by the Sugeno fuzzy inference system.

3.4. Performance criteria

The performances of estimation models are evaluated by the
commonly used measures of goodness-of-fit: RMSE (Root Mean



Table 2
Correlation of water quality parameter pairs in the downstream zone of the Dahan
River (June 2002eJune 2012).

Time scale Parameter pair Correlation Coefficient Ranking

Monthly NH3eN, DO �0.762 1
NH3eN, BOD 0.688 2
NH3eN, EC 0.656 3
BOD, DO �0.653 4
EC, DO �0.653 4
EC, BOD 0.571 6
BOD, COD 0.551 7
SS, COD 0.483 8
SS, pH 0.415 9
EC, COD 0.395 10
COD, DO �0.387 11
NH3eN, Coliform 0.352 12
NH3eN, COD 0.340 13

Quarterly TOC, NH3eN 0.846 1
TN, NH3eN 0.832 2
TOC, BOD 0.819 3
TN, DO �0.772 4
TOC, TN 0.732 5
TN, EC 0.724 6
TP, SS 0.681 7
TOC, DO �0.681 7
TN, BOD 0.671 9
TOC, EC 0.658 10
TP, TN 0.638 11
TP, COD 0.630 12
TP, DO �0.446 13
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Square Error), MAE (Mean Absolute Error), and CE (Coefficient of
Efficiency), shown as follows:

RMSE ¼
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where bY ðtÞ is the estimated value, Y(t) is the observed value, and n
is the number of data points. Y(t-1) is the estimated value of the
preceding time step.

4. Results and discussion

Based on land-use morphology and water contamination
level, the study catchment is divided into two zones: the up-
stream zone (from the Shihmen Reservoir to the Yuanshan Weir;
S1eS3); and the downstream zone (from the Yuanshan Weir to
the confluence point of the Dahan River and the Xindian River;
S4eS7). Fig. 4 shows the water quality of the study area in terms
of Water Quality Index (WQI), which is adopted by the TWEPA
for river quality assessment in Taiwan. The downstream zone
obviously suffers from poor water quality. Therefore, this study
will focus in details on the downstream zone for modeling water
quality.

4.1. Identification of the representative water quality parameter
through correlation analysis

4.1.1. Inter-correlation of water quality parameters
The correlation coefficient analysis is conducted on nine

monthly water quality parameters and five quarterly ones,
respectively. Table 2 summarizes the correlation results at the
downstream zone. For monthly water quality parameters, the
parameter pairs of (NH3eN, DO), (NH3eN, BOD), (NH3eN, EC),
Fig. 4. Monthly WQI indexes (without TP) calculated from seven water quality
(BOD, DO) and (EC, DO) occupy top five higher correlation. The
correlation result of (NH3eN, DO) conforms to the biochemical
phenomenon: the worse the water quality is, the less the oxygen
dissolves in water. NH3eN not only occupies top three correla-
tion but also significantly correlates with DO, BOD and EC (ab-
solute CC > 0.656), which implies NH3eN should play a
significant correlative role in the deterioration degree of the
water body. For quarterly water quality parameters, the param-
eter pairs of (NH3eN, TOC), (NH3eN, TN) and (TOC, BOD) have
similar high correlations (CC > 0.8). The important nitrogen
pollutants, NH3eN and TN, produce high positive correlations
with EC, BOD and TP. NH3eN-related pairs also produce the
highest correlations, which also imply NH3eN should play a
monitoring stations (S1eS7) along the Dahan River (July 2010eJune 2012).
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significant correlative role in the deterioration degree of the
water body.
4.1.2. Determination of representative water quality parameter
NH3eN is known to exist in fertilizers, septic system effluent

and animal wastes. High levels of NH3eN in its un-ionized form
can be toxic to aquatic organisms, which raises a concern. Con-
version of NH3eN to nitrite nitrogen by nitrification consumes
large amounts of oxygen, and thus aquatic organisms can be
destroyed due to the lowered dissolved oxygen concentrations in
water. Taking the correlation results shown in Table 2 into
consideration, NH3eN is considered as the representative water
quality parameter that the most significantly correlates with other
water quality parameters affecting river water quality in the study
area. Fig. 5 exhibits the spatial variances of three nitrogen com-
pounds (NH3eN, Nitrite and Nitrate) in the study area during 2007
and 2011. A higher percentage of NH3eN (in red) in a pie-chart
indicates an instant leakage of unnitrified pollutants, and the
percentage of NH3eN drastically increases from S5 to S7. It ap-
pears that the pollution degrees of these three nitrogen com-
pounds well conform to the degree of economic development
expressed by the orange dots (denote industrial facilities and
farms).

Previous studies indicated that the removal of the vegetation
cover through severe poaching led to an increase in the delivery
rate of NH3eN in surface runoff (Heathwaite et al., 1990), and the
ranking of nitrogen contamination levels is related to the regional
population and economic development (Jingsheng et al., 2000).
Fig. 6 further displays two selected highly NH3eN-contaminated
conditions at the downstream zone during 2004 and 2011. River
water quality may dramatically deteriorate during dry periods due
to the drop in natural flow and water temperature. The most
concerned period in the study area is between September and
April (dry period), during which NH3eN concentrations some-
times reach as high as 16.0 mg/l, far beyond the drinking water
quality standard (0.5 mg/l).
Fig. 5. Spatial variances of three nitrogen compounds (NH3-N, Nitrite an
4.1.3. Correlation between hydrological factors and water quality
parameters

For depicting the time lag phenomena between hydrological
factors and water quality parameters, rainfall data collected at
rainfall gauge stations (R1-R3) are converted into two time series:
previous day (average rainfall of the previous day over R1-R3); and
previous 5-day average (average rainfall of the current day and
previous four days) prior to the water quality sampling day. Similar
arrangement is made for the discharge data of the Yuanshan Weir:
current day (the water quality sampling day); previous day; and
previous 5-day average (average of the current day and previous
four days). In addition, a new factor “days w/o discharge” is intro-
duced to present the time interval between the previous discharge
day and the water quality sampling day. As expected, the correla-
tion coefficients (CC) are not high (less than 0.6); consequently
parameters with relatively high correlation results are selected. EC,
DO and NH3eN showmoderate relations (absolute CCs fall between
0.21 and 0.51) for both rainfall time series. EC, DO, BOD and NH3eN
have higher relationship (absolute CCs fall between 0.4 and 0.6) for
two discharge time series (previous day, and previous 5-day
average). It can be inferred that the longer the period w/o
discharge is, the higher the NH3eN concentration is in the water
body. In brief, rainfall (previous day, previous 5-day average) and
discharge (previous day, 5-day average, das w/o discharge) signif-
icantly correlate with the fluctuation of NH3eN concentration, and
therefore both hydrological factors can be considered as inputs for
modeling.
4.2. Key factor selection through the GT

For building ANNmodels to estimate NH3eN concentration, key
input factors are selected by the GT in this study. The study area
experiences high degrees of urbanization and industrialization, it
would be interesting to understand the impacts of economic factors
(human activities) on NH3eN concentration. Therefore, major
economic indexes are the first time included at the factor selection
d Nitrate) at seven water quality monitoring stations (2007e2011).



Fig. 6. Selected highly NH3eN-contaminated conditions at the downstream zone.
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stage. The correlation analyses are conducted on thirty-one factors
fromwater quality (9), hydrological (10) and economic (12) fields to
reduce the dimension of the GT (231-1 ¼ 2,147,483,647 input
combinations, which is too large). Eleven factors (in italic) bearing
the highest correlation coefficients in each fields are filtered out
and are investigated further by the GT for obtaining an input
combination best suit for modeling (Table 3). It is noted that three
economic factors are selected even though their CC values are
comparatively low for human impact assessment.

A total of 2047 (211-1) G values corresponding to all possible
combinations of factors are calculated. G values are sorted in an
ascending order, values smaller than the 1st percentile (G1) of all G
values are defined as the best results of the GT, whereas G values
bigger than the 99th percentile (G99) of all G values are defined as
theworst results of the GT. By examining the ratio of the occurrence
frequency of each factor in the set of best results (FG � G1) to that of
worse results (FG � G99), key factors are determined as the factors
that produce larger ratios. Fig. 7 shows the GT results, where the
blue bars represent the occurrence frequency of a factor in the best
results (FG � G1) while the red bars represent the occurrence fre-
quency of a factor in the worst results (FG � G99). Four factors (i.e.,
discharge of previous day, days w/o discharge, water temperature
of previous month, and rainfall of previous day) with the highest
ratios are identified as the most significant factors affecting the
NH3eN concentrations. We notice that all the four key factors
belong to hydrological factors, which are relatively easier to
observe as compared with water quality and/or economic factors.
The responses of these four factors to NH3eN concentrations
conform to physical processes (discharge and rainfall makes sig-
nificant effects on river flow, and thus cause the fluctuation of
NH3eN concentration; water temperature strongly affects
ammonia oxidation activity (Groeneweg et al., 1994)), which sup-
ports the suitability of the four factors as model inputs.
4.3. Estimation of NH3eN concentration by ANNs

With the previous four selected factors as input variables and
the NH3eN concentrations as the output, this study adopts three
ANNs to estimate the average NH3eN concentration at S4eS7 in the
study area. Each neural network is calibrated by a 14-fold cross
validation, and the 96 data sets (2004e2011) are allocated: 84 data
sets (2004e2010) for model calibration; and the remaining 12 data
sets (2011) for model testing. The model performance in the testing
stages is listed in Table 4. The results indicate that the NARX
network performs the best, which produces the smallest RMSE and
MAE values and the highest CE value. To be more specific, the NARX
network produces worthy and accurate results when comparing its
RMSE (0.386 mg/l) and MAE (0.277 mg/l) with the mean and
standard deviation (3.072 ± 1.497 mg l�1) of the averaged NH3eN
concentrations over the downstream zone. We would like to note
that the estimation models are constructed based only on four
hydrological variables that are long-term collected in a daily, even
hourly or minutely, scale, and therefore NH3eN concentration can
be estimated in a much shorter time interval of interest (span from
a monthly scale to a daily, even hourly or minutely, scale) through
the constructed model for timely water pollution management.

Ultimately, the performance of the individual modeling ap-
proaches depends on how well these ANNs can describe the un-
derlying physical process as well as specific data sets, and results
are influenced by the affecting factors and conditions associated
with the gauge stations in the study area. Fig. 8 shows the esti-
mation time series of NH3eN concentrations associated with three
constructed ANNs. The results demonstrate that (1) all the models,
in general, well fit the variability of the NH3eN concentration; (2)
the NARX network more accurately reflects the fluctuations of the
NH3eN concentrations owing to its dynamic feature-recurrent
connection; and (3) the NARX network can well catch peak
values that mostly occur in dry periods (SeptembereApril), which
is particularly important to water pollution treatment. In sum, the
NARX network coupled with the GT appears most adequate in
delineating the water quality with hydrological variables.
5. Conclusion

For efficiently assisting in river pollution management and
providing a cost-manpower effective approach to making timely
response to natural and/or manmade pollution, this study proposes
a systematic analysis scheme (SAS) to first identify the represen-
tative water quality parameter by exploring the extensive connec-
tions of parameter pairs of water quality data and next develop



Table 3
Correlation results of NH3eN and factors from water quality, hydrological and
economic fields (2004e2011*).

Factor CCa Factor CC
Water quality parameters

(S4eS7; Previous month)
Economic indexes
(Previous month)

pH �0.163 TWSE TAIEX Index d

EC 0.097 Change extent 0.154
DO �0.006 Monthly trade volume �0.068
BOD �0.039 TAIEX-mechatronics

engineering
COD �0.06 Change extent

(T(ME)-CE)
0.219

SS 0.102 Monthly trade volume �0.042
Coliform 0.195 GTSM Index e

NH3eN 0.222 Change extent
(GTSM CE)

0.184

Water temperature ¡0.388 Monthly trade volume 0.035
Hydrological factors Industrial Production

Index
Rainfall (R1-R4) Volume �0.131
Previous day ¡0.266 Manufacturing industry �0.127
Previous 5-day average �0.464 Commodity industry �0.136

Discharge (Yuanshan Weir) Chemistry industry �0.167
Current day 0.039 Metal & Machinery

Industry (IPMMI)
�0.204

Previous day ¡0.331 Index of Producers
Shipment

Previous 5-day average �0.332 Volume �0.114
Days w/o discharge 0.593
Previous discharge 1b �0.189
Discharge maintain rate 1c �0.191
Previous discharge 2b �0.362
Discharge maintain rate 2c �0.406

* Discharge data of the Yuanshan Weir are available in the period of 2004 and 2011.
Therefore, the modeling period is limited to 2004e2011, instead of 2002e2012 (the
period of available water quality data in this study). Candidate factors for the GT are
marked in italic while the selection results of the GT are marked in bold.

a Correlation coefficient.
b Previous discharge: previous discharge quantity of the Yuanshan Weir on the

sampling day of NH3eN (1: w/current day volume; 2: w/o current day volume).
c Discharge maintain rate: previous discharge divided by Days w/o discharge.
d TWSE TAIEX Index: Taiwan Stock Exchange Capitalization Weighted Stock In-

dex, compiled by Taiwan Stock Exchange Corporation.
e GTSM Index: Gre Tai Securities Market Capitalization Weighted Stock Index.

Fig. 7. Determination of k

Table 4
Model performance of NH3eN concentration at S4eS7 in the testing stages.

Model Node number RMSE MAE CE

BPNN 4 0.620 0.504 0.829
ANFIS 3 0.753 0.644 0.747
NARX 4 0.386 0.277 0.926

F.-J. Chang et al. / Journal of Environmental Management 151 (2015) 87e9694
estimation models for the representative parameter by using three
ANNs (one dynamic-NARX and two static-BPNN and ANFIS) with
one advanced factor selection method based on a number of factors
selected from water quality, hydrological and economic domains.
The Dahan River is the study area. Significant findings are
addressed as follows:

1) Serious contamination problems are found to exist at water
quality monitoring stations S5eS7 (the downstream zone) ac-
cording to WQI results;

2) NH3eN is identified as the representative water quality
parameter most significantly correlative with other water
quality parameters responsible for water quality deterioration
the study area;

3) Four key factors (discharge of previous day, days w/o discharge,
water temperature of previous month, and rainfall of previous
day) are identified as model inputs by the GT through assessing
a large number (2047 in this case) of all possible input combi-
nations in association with nine factors selected from water
quality, hydrology and economic fields. It is worth noting that
these four inputs consist only of hydrological factors, which
shows a more influential role the hydrological factors play;

4) The dynamic NARX network produces the most accurate esti-
mation results for NH3eN concentration than the two static
neural networks. This is mainly because that the NARX is fur-
nished by its recurrent connections, which is more suitable to
track the dynamic features of the estimated time series. It also
can well captures peak values that mostly occur in dry periods,
which is particularly important to water pollution treatment;
and

5) The proposed SAS is considered as a breakthroughmethodology
for reliably modeling NH3eN concentration, which pivots solely
on hydrological data, without the use of water quality sampling
ey factors by the GT.



Fig. 8. Performance comparison of the regional NH3eN concentrations.
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data. The scheme also implies that estimation can be made in a
much shorter time interval of interest (span from a monthly
scale to a daily scale) because hydrological data are usually
measured in a daily scale.

The proposed analytical scheme favorably estimates NH3eN
concentration in a much easier (with only hydrological field sam-
pling) and more efficient (in shorter time intervals) way and can be
appropriately and practically applied to other water quality pa-
rameters and/or study areas of interest, which can substantially
help river managers timely interpret and estimate water quality
responses to natural and/or manmade pollution for river pollution
management.
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