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The evolution of antibiotic resistance (AR) increases treatment cost and probability of fail-
ure, threatening human health worldwide. The relative importance of individual antibiotic
use, environmental transmission and rates of introduction of resistant bacteria in explaining
community AR patterns is poorly understood. Evaluating their relative importance requires
studying a region where they vary. The construction of a new road in a previously roadless
area of northern coastal Ecuador provides a valuable natural experiment to study how
changes in the social and natural environment affect the epidemiology of resistant Escherichia
coli. We conducted seven bi-annual 15 day surveys of AR between 2003 and 2008 in 21 villages.
Resistance to both ampicillin and sulphamethoxazole was the most frequently observed pro-
file, based on antibiogram tests of seven antibiotics from 2210 samples. The prevalence of
enteric bacteria with this resistance pair in the less remote communities was 80 per cent
higher than in more remote communities (OR ¼ 1.8 [1.3, 2.3]). This pattern could not be
explained with data on individual antibiotic use. We used a transmission model to help
explain this observed discrepancy. The model analysis suggests that both transmission and
the rate of introduction of resistant bacteria into communities may contribute to the observed
regional scale AR patterns, and that village-level antibiotic use rate determines which of
these two factors predominate. While usually conceived as a main effect on individual
risk, antibiotic use rate is revealed in this analysis as an effect modifier with regard to
community-level risk of resistance.

Keywords: antibiotic resistance; Escherichia coli; transmission models; Ecuador;
community
1. INTRODUCTION

Antibiotic resistance (AR) threatens human health
worldwide [1]. As resistant bacteria spread, and failure
of antibiotics in the clinical setting increases in fre-
quency, infections require more expensive drugs and
are more likely to be associated with serious morbidity
and/or mortality [2]. The cost of these failures exceeds
billions of dollars annually in the United States [3].
orrespondence ( jnse@umich.edu).
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That the evolution of AR is influenced by individual
antibiotic use in human and veterinary medicine is
well known [4,5], and programmes aimed at limiting
the spread of resistant bacteria often focus on restrict-
ing antibiotic use and/or choosing therapeutic options
that minimize selection for resistance [6]. Yet, resistance
mechanisms are often complex, suggesting that resist-
ant bacteria are not likely to arise by antibiotic
selection pressure over the course of treatment alone,
and in many cases, the genes that confer resistance
must have been acquired by colonizing bacteria or
shared among bacteria on mobile genetic elements [7].
This journal is q 2011 The Royal Society
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The emphasis on evolution of AR during treatment
ignores the role of acquisition of resistant bacteria via
other transmission routes, such as environmental path-
ways and human contact patterns. The relative role of
these different factors in determining the prevalence of
AR within and across communities has not been studied,
however, and in general, little is known about the spread
of resistant bacteria in community settings. The
relationship between the total antibiotic use and the
rate of AR spread among individuals in a population is
an important, but unresolved question, as is the role of
broader ecological processes in spreading resistant bac-
teria among animals and humans [8,9]. Studying
population-level processes shifts the emphasis from
individual use to overall antibiotic use rates and the
number of other people who carry resistant bacteria
[10]. Transmission models are important tools to study
such system-level population processes.

Mathematical models of infection transmission have
been used throughout the twentieth century to help
understand the epidemiology of infectious diseases [11].
These theoretical approaches describe the ecological
and evolutionary dynamics of host–pathogen inter-
actions that generate disease patterns in space and time
[12]. Mathematical models have been applied to the emer-
gence and the spread of resistant bacteria, extending
simple transmission models to reflect competition, such
as simple infections with colonization inhibition [13],
complex infections with resistance [14] or amplification
of resistant bacteria owing to overgrowth following anti-
biotic use [9]. In general, these models have focused on
hospital settings [15] and quantify the effects of different
infection control measures [13,16–18]. In hospital set-
tings, healthcare workers are often modelled as vectors
that spread resistant organisms among patients [19].

Mathematical models can also offer important insights
into the mechanisms and extent of the spread of AR in
community settings, which are more difficult to study.
Recent AR models have focused on movement of patients
among hospitals [19], long-term care facilities [20],
and the community [14] and the role of antibiotic use in
agriculture [9]. Emergence of AR can be modelled as
an invasive pathogen [12] into the human population
[9,21] using models that incorporate spatial and social
processes [22].

Evaluating the relative importance of individual medi-
cation use, environmental transmission and rates of
introduction of AR bacteria in explaining community
AR patterns requires studying a region where there is
variability in all of these factors. The construction of a
new road in a previously roadless area of northern coastal
Ecuador provides a valuable natural experiment to study
how changes in the social and natural environment,
mediated by road construction, affect the evolution and
the spread of AR enterobacteria. This study area, com-
prising villages with varying degrees of remoteness
relative to the main road (figure 1), offers an ideal location
for studying AR at a community scale. Since we postulate
that the social and ecological changes that might affect
the spread of AR bacteria will unfold over a large time
scale, we use remote villages as a proxy for conditions
prior to the construction of the road and close villages
as a proxy for conditions after. We, therefore, use a
J. R. Soc. Interface (2012)
cross-sectional design along with statistical models to
examineARas a function of remoteness, andweusemath-
ematical models to explain the relative contributions of:
(i) antibiotic use; (ii) transmission of AR bacteria, gener-
ally mediated through standard water, sanitation and
hygiene environmental pathways; and (iii) rates of intro-
duction of resistant bacteria, represented in our model
as an ingestion factor, in explaining observed patterns of
AR in 21 communities. The spread of resistant bacteria
is framed here as a spatially inhomogeneous process
that affects prevalence. This occurs through both envi-
ronmental sources and human movement patterns,
whose effects are modified by conditions that increase
the potential for human-to-human transmission, such
as poor sanitation. Based on 5 years of data across 21 com-
munities, we describe regional patterns of AR prevalence
and use a transmission model to provide plausible
explanations for these observed patterns.
2. METHODS

2.1. Study site

In the northern Ecuadorian province of Esmeraldas,
approximately 150 villages (ranging from 20–800 inhabi-
tants) lie along the Cayapas, Santiago and Onzole rivers,
which all flow towards Borbón, the main population
centre of the region (with 5000 inhabitants). Villagers
primarily consume untreated surface source water and
sanitation facilities are inadequate. The region, populated
primarily by Afro-Ecuadorians [23], is undergoing intense
environmental and social changes owing to the construc-
tion of a new highway along the coast, which connects
previously remote villages to the outside world. Construc-
tion of the road was completed from Borbón westward to
the provincial capital of Esmeraldas in 1996 and from the
coast eastward to the Andean mountains in 2003. Second-
ary and tertiary dirt roads off of this two-lane asphalt
highway are continually being built, mostly for logging
and the area has come to be known as one of the
world’s top 10 biodiversity hotspots [24]. At the time
these data were collected, 15 per cent of the 150 villages
in the region were accessible by road.

All villages in the region were categorized based
on their geographical location relative to Borbón. A
sample of 21 villages was selected by using block
randomization to ensure that villages of varying
remoteness and population sizes were represented; four
of these were connected to the road when this study
began. All households within each village were recruited,
except in Borbón, where a random sample of 200 house-
holds (from approx. 1000) was selected for inclusion in
the study. Consent was obtained at both the village
and household level. Institutional review boards
at the University of California Berkeley, University
of Michigan, Trinity College and Universidad San
Francisco de Quito approved all protocols.
2.2. Study design

Between August 2003 and February 2008, each enrolled
village was visited seven times, with each visit lasting
15 days. Villages were visited on a rotating basis,
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Figure 1. Map of study region. The 21 villages are categorized by river basin (Santiago, Cayapas, Onzole, Bajo Borbón and road),
and by remoteness (close, medium and far).
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during which time field staff identified all cases of diar-
rhoea through active surveillance. For each case of
diarrhoea (defined using WHO standards as three or
more loose stools in a 24 h period), two controls were ran-
domly sampled from the same community, and one
control was sampled from the case household. Controls
were defined as someone with no signs of diarrhoea in
the previous 6 days. Four 15 day case–control visits
were conducted in Borbón. Antibiotic usage was
measured through a sequential random sample of house-
holds where many of the households were measured more
than once. A key informant was asked whether any
household members had used antibiotics within the last
week and, if so, they were asked to name the drug.
Responses from the key informant were converted to
the individual level by recording usage for those ident-
ified by the survey and imputing a response of ‘No
J. R. Soc. Interface (2012)
usage’ for the remaining individuals who were known to
live in the house from previous demographic surveys.

2.3. Classifying remoteness

For each village, travel time and total cost of travel to
Borbón were recorded by field staff members. Specifi-
cally, transport time was estimated assuming the use
of a motorized canoe or bus, depending on location,
and transport cost was determined through inquiries
of key informants within each community. For each
village, i, rank of remoteness, Ri, was calculated by
summing normalized values of time, Ti and cost, Ci.
Specifically,

Ri ¼
Ti

P21
j Tj
þ Ci
P21

j Cj
:
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Since the metric is the result of two values standar-
dized to a [0,1] scale, the possible range of Ri is from
0 (the town Borbón itself ) to 2 (the theoretical farthest
community from Borbón). Villages were classified into
three groups based on their remoteness metric: close,
medium and far from Borbón. The categorical break-
points were selected by maximizing the differences in
the mean remoteness values for each category.
2.4. Microbiological analysis

Stool samples were collected by field staff from cases and
controls, stored on ice and processed within 48 h and
tested for the presence ofEscherichiacoli andAR.Lactose
positive isolates that were identified as E. coli were further
analysed for antibiotic susceptibility (to ampicillin (amp),
cefotaxime, chloramphenicol, ciprofloxacin, gentamicin,
sulphamethoxazole–trimethoprim (sxt) and tetracycline)
using the disc-diffusion method following standard
methods. To test for the presence of E. coli, stool was
plated directly onto MacConkey agar; lactose positive
colonies were further cultured in Chromocult agar. The
five most prominent lacþ isolates were initially selected
and one confirmed E. coli isolate was randomly chosen
for further AR analysis. All lactose negative isolates
were analysed for urease and oxidase, and with API 20
E (bioMérieux Corp) to speciate the bacterial isolates.
Lactose positive isolates that were identified as E. coli
were further analysed for antibiotic susceptibility (to
amp, cefotaxime, chloramphenicol, ciprofloxacin, genta-
micin, sxt and tetracycline) using the disc-diffusion
method following standard methods [25,26]. As sulpha-
methoxazole and trimethoprim work synergistically,
they are commonly used together, often in the same pill.
Therefore, one standard clinical approach is to screen for
the combined resistance to both at the same time with
discs impregnated with both antibiotics, and the resulting
resistance to both antibiotics is then listed as sxt resist-
ance. This was done as part of this study, with the
limitation that we do not have information on E. coli iso-
lates that were resistant to sulphamethoxazole, but not
trimethoprim, or vice versa. These seven antibiotics
were chosen to be included in this study because they
were reported to be the most commonly used antibiotics
in the region both by physicians within our field staff
and byother physicians who alsowork in the study region.
2.5. Statistical analysis

Our statistical analysis consists of the following: (i) calcu-
lating prevalence of each AR profile correcting for the
unequal sampling probabilities of cases and controls;
(ii) estimating the variability of individual-level anti-
biotic use using random effects models to compare
variability over time over space; (iii) estimating the
association between AR and remoteness using binary
response general estimating equation (GEE) models;
(iv) summarizing prevalence of antibiotic use in terms
of drugs most frequently used, and in terms of prevalence
of use; (v) exploring how antibiotic use rates vary as a
function of remoteness to investigate their potential uti-
lity in explaining observed AR patterns; and (vi)
J. R. Soc. Interface (2012)
examining the assumptions associated with aggregating
our AR data over time.

2.5.1. Calculating prevalence
The data used to estimate the distribution of AR was a
non-standard case–control design consisting of cases,
household controls and community controls. Since cases
are relatively rare, simple estimators of prevalence are
potentially biased owing to over-representation of cases.
To obtain community prevalence estimates, therefore,
required different analytical techniques that use the
following weighting procedure. Cases (those presenting
with diarrhoea) were given a weight of 1, since all cases
in each community were sampled, giving them a sampling
probabilityof 1.Household controls (those sampledwithin
a housewith a case and not presenting with diarrhoea) are
weightedby the inverseof theproportionof the susceptible
population of household controls represented by the con-
trol sample. The equivalent weight is also calculated for
the community controls (note, this weighting was done
by community and collection cycle, and thus the weighted
contribution of a community/cycle to the analysis is the
same regardless of its total population size, i.e. the commu-
nities are the units). Using these weights, we calculate the
standard Horvitz–Thompson estimator [27] of preva-
lence, which yields unbiased estimators of population
means and proportions in unequal probability samples.

2.5.2. Variability of antibiotic use
To compare the variability of antibiotic use over time
and over space, two random effect models are fit with
antibiotic use as the dependent variable. In the first
model, the variance of the random offset corresponding
to household is estimated; in the second, the variance of
the random offset corresponding to time point. Com-
parison of the size of these variances is then used to
give an indication of whether there is more variability
between households (spatial) or between time points
(temporal). Further details on this analysis are given
in the electronic supplementary material.

2.5.3. Association between antibiotic resistance
prevalence and remoteness
To explore the relationship between amp–sxt resistance
prevalence and remoteness, we estimate the odds ratio
between the binary indicator of amp–sxt resistance
and (i) the binary indicator of medium/close remote-
ness, using ‘far’ as the reference category as well as
(ii) the binary indicator of residence in Borbón using
the other communities as the reference category. To cor-
rect for unequal probability sampling, each observation
is replicated a number of times equal to its sampling
weight. Odds ratios are estimated by fitting a logistic
regression model to this expanded dataset. To derive
the statistical inference for the relevant measures of
association, we relied on the clustered non-parametric
bootstrap, specifically re-sampling 21 villages with
replacement from the expanded dataset and estimate
the odds ratio from this ‘bootstrap dataset’ [28]. This
process is repeated 10 000 times to estimate the
sampling distribution of the odds ratios and we use
the quantile method to derive the 95% CI. In the far
versus medium/close comparisons, only bootstrap
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datasets that have at least two villages from each remo-
teness category are included, since the sampling of
villages was done to create variability between villages
in terms of remoteness. Therefore, datasets with 1 or 0
villages in one or more remoteness categories do not
reflect the sampling distribution of interest. Similarly,
in the Borbón versus community comparisons, bootstrap
datasets that did not include Borbón at least once did
not contribute to the reported confidence intervals (CI).

2.5.4. Prevalence of antibiotic use
To characterize the per-day prevalence of use, we calcu-
late the proportion of individuals that report having
used antibiotics within the last week and scale this
quantity by 7, tacitly assuming that individuals only
used drugs on 1 day within the last week and it was
equally likely to have been any day. Since individuals
could have ingested drugs on more than 1 day, our
use rate constitutes a lower bound. To look at what
drugs are most commonly used, we summarize the rela-
tive frequency of drugs used among those that reported
use (electronic supplementary material, table S1).

2.5.5. Antibiotic use and remoteness
Antibiotic use at a community level is estimated by the
sample proportion of respondents who reported using
antibiotics. We consider an individual to have used anti-
biotics if they indicate they have consumed any of: amp,
amoxicillin, sulphamethoxazole, trimethiprim or benzi-
penicillin. Ordinary least-squares regression was used
to look at the relationship between the village-level
proportion and remoteness. Although the proportion
reporting use is clearly bounded between 0 and 1, the dis-
crepancies from the regression line appeared symmetric
(electronic supplementary material, figure S2), making
ordinary least squares a tenable choice.

2.5.6. Aggregation of antibiotic resistance data
over time
To justify that the effect of remoteness on amp–sxt resist-
ance is static, this relationship is assessed at each of the
seven time points using a GEE model in the same way
as was done in estimating the relationship between remo-
teness and AR prevalence on the full dataset. For each
time point separately, we fit an independence GEE
model with remoteness category as the lone predictor
and amp–sxt resistance as the response variable. Confi-
dence intervals for the odds ratios comparing ‘far’ with
the two other categories were produced using the same
non-parametric bootstrap described for the full dataset,
and intervals were examined for overlap (electronic sup-
plementary material, figure S1). Greater detail is given
in the electronic supplementary material.

2.6. Modelling

We use a village-level compartmental transmission model
[9] to examine the observed patterns of AR prevalence
in our study communities. We chose a compartmental
model, which assumes populations are well-mixed,
because it provides better explanatory power than more
complex model structures for understanding factors that
drive transmission. A deterministic model does not allow
J. R. Soc. Interface (2012)
for the possibilityof stochastic die-out, but at the phenoty-
pic level, we do not observe this; i.e. all communities have
non-zero prevalence.At the genotypic level, there could be
stochastic die-out of specific strains, however, we do not
have the genotypic information to illustrate this and there-
fore did not include this level of resolution in the model.
The equation and parameters are shown in figure 2. This
model tracks four conditions among humans: (i) not colo-
nized with resistant bacteria (W ); (ii) transiently
colonized with resistant bacteria, such that the bacteria
have a high probability of dying out (X ); (iii) colonized
with resistant bacteria such that the population is more
stable and less likely to die out compared with the exposed
state (Y ); and (iv) amplified or colonized with resistant
bacteria such that bacterial species are present in high
numbers and are actively reproducing (Z).

The model assumes that human exposure to resistant
bacteria comes from either: (i) the spread of these AR
bacteria through standard water, sanitation and hygiene
pathways, or (ii) the ingestion of new antibiotic resistant
strains that arise from either environmental sources (e.g.
food or water) or introduction through movement of
people to and from the region. AR spread is modelled
as person-to-person transmission. Amplified resistant
bacteria (Z) are assumed to transmit at a higher rate,
b, than the unamplified or colonized bacteria, which
transmit at a rate h. The rate of ingestion is described
by the parameter l. Antibiotic use, at a rate r, is assumed
to alter the community ecology of the gut, eliminating
competition with antibiotic-sensitive bacteria and allow-
ing the population density of resistant bacteria to
increase. The remaining five parameters that represent
the rates of movements between states are described in
figure 2 as well as in Smith et al. [9].

Although we observe that cases have higher preva-
lence of AR than do controls, both cases and controls
have higher prevalence of AR in the less remote villages.
Thus, in the simulation analysis, we do not make a
distinction between cases and controls.

An estimate of the transmission rate was established
using E. coli prevalence data from our study region. Pre-
vious analysis of these data suggests an eightfold
difference in E. coli prevalence comparing remote versus
non-remote villages [29]. We use the prevalence values
from this analysis for these two types of villages in con-
junction with a susceptible–infected–susceptible (SIS)
model (with disease duration of one week) to estimate b,
the rate of transmission from amplified to susceptible indi-
viduals. b is estimated to be 0.154 new infections per
infectious individual per susceptible individual per day
for the most remote village, and 0.325 for the least
remote village, a transmission rate ratio of 2.11.To explore
the sensitivity of transmission to AR prevalence, we vary
this ratio in our simulation analysis from 0.9 to 9 keeping
the baseline transmission rate for remote villages at 0.154.
The rate of transmission from colonized to susceptible
individuals, h, is assumed to be one-tenth the value of b
because colonized individuals have smaller populations
of AR bacteria in their gut than amplified individuals.

The antibiotic use rate, r, is based on survey data
collected in each village, and does not vary by remote-
ness. The antibiotic use data, employed to estimate the
antibiotic use rate parameter, r, are presented in §3.
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parameter definitions values (d–1)

per capita rate at which exposed people become colonized (colonization
rate) 

0.001

per capita rate at which amplified populations revert to low-density colonized 
populations (recolonization rate) 

0.003

per capita rate that humans are prescribed an antibiotic that amplifies the 
AR bacteria populations (prescription rate) 

0.01

per capita rate of exposure to new AR strains (exposure rate) l
a
q

s
g
j

r

h
b

10–3 

rate at which populations in exposed people are lost (transient loss rate) 0.1 

rate at which regular populations are lost (colonized loss rate) 0.003 

rate at which amplified populations are lost (amplified loss rate) 0.007 

transmission rate between unexposed and colonized individuals 0.0154/0.0325 

transmission rate between unexposed and amplified individuals 0.154/0.325 

state variables: 

W:  unexposed 
X:  exposed (transient infection likely to die out) 
Y:  colonized (stable infection less likely to die out) 
Z:  amplified (stable with increasing population size) 

model equations: 

X

Y

Z

bZ

r

l

q

s

gj

bZ

a

h

hY

—dX = (l + hY + bZ)W – (q + a + r)Xdt

—dY = qX + fZ – (r + s)Ydt

—dZ = r(X + Y) – (g + f)Z
dt

Figure 2. Deterministic antibiotic resistance model. W ¼ 12X2Y2Z. See Smith et al. [9] for details.
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We specify the range for the antibiotic use rate by
extending the 95% CI, resulting in the range r: 0.001
to 0.01 antibiotics per person per day.

The per capita rate of human exposure to new strains
(introduction rates), l, is unknown for this region. We use
the same per day baseline rate (0.001) reported in Smith
et al. [9] to represent a remote village. To explore the sen-
sitivity of l to AR prevalence, we vary the rate of non-
remote villages so that the ratio ranges from 1 to 10.
The assumption that introduction rates are higher in
non-remote villages is consistent with the observation
that there is more human movement to and from outside
the region in these non-remote villages [29], providing
more opportunity to introduce AR bacteria.

To examine the interaction between antibiotic use
rates, transmission rate ratios comparing remote and
non-remote villages, and introduction rate ratios com-
paring remote and non-remote villages, we simulate the
model for a range of each of these three factors and use
contour plots to present their relationship. The outcome
measure is the risk ratio comparing a remote to a non-
remote village. This risk ratio measure was compared
with the empirical results presented in table 2.
3. RESULTS

Between 2003 and 2008, a total of 2210 E. coli isolates
were successfully analysed (518 were cases with diarrhoea
J. R. Soc. Interface (2012)
and 1692 were controls without diarrhoea). We stratify
our analysis by case/control status since the microbiota
of those with diarrhoea is quite different from those with-
out diarrhoea. Using results of screening isolates for
sensitivities to seven antibiotics, we observed 39 unique
profiles. The nine highest frequency profiles are listed in
table 1. The distribution of antibiotic profiles differs
between cases and controls with cases having a tendency
towards a higher frequency of resistance. Three of the
most frequently observed profiles include resistance to
amp and sxt. Sulphamethoxazole-resistant genes and
trimethoprim-resistant genes are almost always present
on the same integrons, while b-lactamase genes encoding
resistance to amp can sometimes also be found in the
same integron [30,31] or outside of the integron, but on
the same plasmid [32,33]. In contrast, tetracycline resist-
ance is never found as part of an integron [34]. Thus, amp
and sxt resistance are more likely to be horizontally and
clonally transmitted together. For this reason, and
because antibiotics that select for amp–sxt resistance
are frequently used in the region (see below), we focus
analysis on amp–sxt.

We first report on the relationship between remote-
ness and amp–sxt resistance, showing that amp–sxt
resistance decreases with remoteness. We next present
our data on antibiotic use and show that there is no
relationship between antibiotic use and remoteness,
suggesting that the relationship between AR prevalence
and remoteness cannot be explained by differences in

http://rsif.royalsocietypublishing.org/


Table 1. Estimated prevalence, weighted by the inverse
sampling probability, of antibiotic-resistant E. coli profiles.
Cases are defined as those with diarrhoea and controls are
those without. All profiles with frequencies of less than 1%
are placed in the ‘other’ category. The antibiotics tested are:
ampicillin (amp), tetracycline (tet), sulphamethoxazole–
trimethoprim (sxt), chloramphenicol (clo), cefotaxime (ctx),
gentamicin (gen) and ciprofloxacin (cip).

profile

prevalence (per 100)

total cases controls

none 67.5 51.5 67.8
amp–sxt–tet 8.0 19.8 7.8
tet 6.9 4.0 7.0
other 3.5 4.7 3.5
amp 3.0 3.5 3.0
sxt–tet 2.9 1.8 2.9
amp–sxt–tet–clo 2.6 4.6 2.6
amp–tet 2.3 3.5 2.3
amp–sxt 2.1 6.3 2.1
sxt 1.0 0.3 1.1
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use rates alone. We present the results of an infection
transmission model that examines the interaction
between antibiotic use, transmission of resistant bac-
teria and introduction of resistant bacteria into
villages in determining regional patterns of AR. The
model analysis suggests that patterns of transmission
as well as patterns of introductions of resistant bacteria
into communities contribute to the regional-scale AR
patterns we observed, and that antibiotic use rates
determine which of these two factors predominate.
3.1. Ampicillin–sulphamethoxazole–
trimethoprim resistance as a function
of remoteness

Ampicillin–sulphamethoxazole–trimethoprim (amp–
sxt) resistance is significantly associated with lack of
remoteness (table 2). This trend is consistent for both
cases and controls. Estimating the community preva-
lence based on a weighted sum of the case and control
observations, there was little difference in villages of
far and medium remoteness (OR ¼ 1.1 [0.6, 1.8])
whereas close villages have higher prevalence relative
to far villages (OR ¼ 1.8 [1.3, 2.3]). Similarly, there
are higher levels of resistance in Borbón, the main popu-
lation centre of the region, compared with the
communities collectively OR ¼ 1.3 [1.1, 1.6]). Although
data were observed at seven different time points, we
aggregate the data in this analysis, making an assump-
tion about temporal stability of these relationships.
This assumption is supported by data presented in
electronic supplementary material, figure S1, which
show that the confidence intervals for the odds ratios
stratified by time overlap.

As with any symptom-based definition, there is the
possibility of misclassification; however, if we assume
that the disease misclassification is non-differential
across our exposure (in this case remoteness of our
study villages), then misclassification will bias the
J. R. Soc. Interface (2012)
results towards the null. We would, therefore, expect
greater differences among our remoteness categories if
we could adjust for this bias.
3.2. Antibiotic use

During the study period, we surveyed 1875 individuals
about their antibiotic use in a population that averaged
around 4000 at any given time. On average, each
sampled individual was surveyed 1.3 times over the
study period, ranging from one to six times, also result-
ing in multiple measurements of each household. A
random effects analysis of these data supports our
sampling strategy for added coverage across households
rather than coverage over time (see electronic sup-
plementary material). Among those individuals
reporting use, the most frequently named antibiotics
were amoxicillin (20% of antibiotics mentioned), amp
(13%), sulphamethoxazole/trimethoprim (8%) and
ciprofloxacin (8%) (electronic supplementary material,
table S1). In the analysis presented in this manuscript,
we restrict focus only to drugs that select for amp–sxt
resistance. In addition to its constituent drugs, we
also include amoxicillin and benzylpenicillin. These
are in the family of beta lactams and therefore their
use potentially selects for amp resistance. Over the 5
years of collecting survey data across the region, the
average use rate was 0.05 per individual per week.
Assuming use is evenly distributed throughout the
week, this corresponds to a rate of 0.006 per individual
per day, with an associated 95% CI of (0.003, 0.010).
This rate per day is used in our subsequent simulation
studies. There was no relationship between antibio-
tic use and remoteness at the community level (see
electronic supplementary material, figure S2).
3.3. A transmission perspective on the observed
antibiotic resistance patterns

We use a transmission model to examine how the
interaction among antibiotic use, transmission rates
of antibiotic resistant E. coli and introduction rates
of antibiotic resistant E. coli into villages affect the
community-level AR patterns that we observed. As
described in the transmission model, the transmission
and introduction rates vary by remoteness, whereas
antibiotic use does not. Our transmission model analy-
sis suggests that the level of antibiotic use determines
which factors explain the risk ratio of AR prevalence
when comparing a close village with a far village: the
ratio of transmission rates (close versus far) and/or
the ratio of introduction rates (close versus far). This
result is shown using contour plots of the risk ratio as
a function of both the transmission rate and introduc-
tion rate ratios for both low and high antibiotic use
rates (see electronic supplementary material, figure S3).

To examine the marginal effects of transmission ratio
and antibiotic use rate, we integrate out the introduc-
tion rate by calculating the geometric mean of the
observed risk ratios across all introduction rate values
(figure 3). This is virtually identical to risk ratios corre-
sponding to fixing the introduction rate ratio to its
midpoint value of two. Figure 3, therefore, presents a

http://rsif.royalsocietypublishing.org/


Table 2. Prevalence and odds ratio of simultaneous antibiotic resistance to amp and sxt among participants living in 21
villages in Ecuador. Cases are defined as those with diarrhoea and controls are those without. Medium and close categories are
compared with the far category. Observations are weighted based on their inverse sampling probability to account for unequal
probability sampling.

remoteness

sulphamethoxazole and ampicillin resistance

case prevalence
(infections per 100)

control prevalence
(infections per 100)

overall prevalence
(infections per 100)

OR
(95% CI)

far 35.2 12.4 12.8 1.0
medium 32.6 13.4 13.8 1.1 (0.6, 1.8)
close 43.0 20.1 20.5 1.8 (1.3, 2.3)

community 37.6 15.6 16.0 1.0
Borbón 46.4 19.4 20.0 1.3 (1.1. 1.6)
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Figure 3. The risk ratio of AR prevalence comparing a non-
remote village (close) with a remote village (far) as a function
of the ratio of transmission rates for close versus far villages.
Each plot is for a different antibiotic use rate (r) ranging
from 0.001 to 0.01 antibiotics per person per day. The trans-
mission rate of the remote village is 0.154 (see text for
justification). See figure 2 for remaining parameter values.
Circles with solid line, r ¼ 0.001; squares with solid line, r ¼
0.002; triangles with solid line, r ¼ 0.003; asterisks with
solid line, r ¼ 0.006; diamonds with solid line, r ¼ 0.01.
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plot of the effect of the ratio of transmission rates
in close versus far communities on the risk ratio for
sxt–amp resistance in close versus far communities for
various antibiotic use rates to display the interaction
between use rate and transmission ratio (figure 3).
For extremely low antibiotic use rates (e.g. r ¼ 0.001
per day), the transmission rate ratio has little effect
on the risk ratio; i.e. given little selection pressure on
AR in the village, transmission cannot amplify the
prevalence levels. Under this scenario, the prevalence
differences among villages can be attributable to differ-
ences in the introduction rates of resistant bacteria. The
transition from no relationship to a very strong relation-
ship between the transmission ratio and risk ratio can
be seen as r increases. As this happens, the transmission
rate ratio becomes the predominant determinant of the
risk ratio; i.e. antibiotic use selects for AR and resistant
bacteria spread throughout the villages via transmission
pathways. It appears that in our study region, AR
J. R. Soc. Interface (2012)
prevalence is most sensitive to changes in the trans-
mission rate ratio. This conclusion is based on our
site-specific estimates of: (i) r (0.003 to 0.01); (ii) the
ratio of the transmission rate, b, comparing close
versus far villages (2.11); and (iii) the risk ratio of AR
prevalence (1.8 [1.3, 2.3]).
4. DISCUSSION

Roads have important impacts on social and ecological
processes that in turn have impacts on health [35]. The
relationship between roads and disease has been exam-
ined for a variety of infectious diseases including HIV,
malaria, dengue and diarrhoeal disease [29,36–38].
Here, we provide data from a 5 year regional-scale
observational study showing that roads can also
impact the spread of resistant bacteria. Focusing on
E. coli resistance to amp–sxt, the most common pairing
of antibiotics observed, we found a higher prevalence
of antibiotic-resistant bacteria in villages along the
road compared with more remote villages. These results
are consistent with those of other researchers, who have
found higher levels of AR organisms in sites with
greater anthropogenic influence [39–42].

However, we found no relationship between anti-
biotic use and remoteness, which probably relates to
the presence of both governmental and non-governmen-
tal organizations that deliver medical care, including
antibiotics, throughout the region. Given its homo-
geneous distribution along the remoteness gradient,
we employed a village-level transmission model to
better understand how antibiotic use impacts preva-
lence patterns at a regional scale. Our model analysis
suggests that at the regional-scale individual antibiotic
use serves to modify the effect of two potentially impor-
tant processes: the transmission of E. coli from person
to person mediated through environmental pathways,
and the introduction of E. coli from outside the region
owing to the movement patterns of people into and
out of the region [29]. As antibiotic use rates decrease
across the region, the differential rate of introduction
becomes a more important determinant of our observed
prevalence patterns. Transmission becomes an impor-
tant determinant when antibiotic use increases; i.e.
antibiotic use amplifies transmission. Thus, antibiotic
use has a regional-scale impact that differs from those
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impacts that are derived from only considering the
individual-level scale.

At the individual scale, experimental evidence
suggests that resistant bacteria can be out-competed by
their sensitive counterparts [43]. The implication of this
is that once the pressure of antibiotics is removed, the
population of resistant bacteria may decrease relatively
quickly, making an individual’s antibiotic use act primar-
ily as a main effect on his/her probability of colonization
with a resistant strain. However, at the community level,
the effect of antibiotic use is more complex. Evidence
suggests that the fitness costs of resistance can be very
low [44–46], and therefore the subsequent slow decline
in the prevalence of resistant bacteria once the antibiotic
use ceases, provides continued opportunity for resistant
organisms to spread from host to host, from host to the
environment and from the environment to the host.
Therefore, interplay between antibiotic use, disease trans-
mission rate and rate of introduction from the
environment must be considered when characterizing dri-
vers of population-level prevalence of resistant bacteria.

Our analysis suggests that the antibiotic use rate acts
to modify the impact of the transmission rate and out-
side introduction rate, indicating that the effect of
antibiotic use rate on community-level prevalence
cannot be thought of in isolation. When antibiotic use
is high (e.g. r ¼ 0.01, antibiotics per person per day),
the bacteria resistant to the antibiotic being used is
selected for within the individual, thereby making it
more likely for a transmission event to involve a resistant
organism. Under these conditions, transmission becomes
a major driver of AR prevalence, with outside introduc-
tion having a comparatively very small effect. When
antibiotic use is low (e.g. r ¼ 0.001, antibiotics per
person per day), most transmission events involve sensi-
tive bacteria, rendering the transmission rate impotent
as a driver of AR prevalence (figure 3). In this setting,
oral exposure, which occurs through ingestion of bacteria
into the gastrointestinal tract, is the primary driver of
prevalence; this exposure comes from a variety of sources
including introduction from outside the region. Many
studies have demonstrated that AR can spread between
individuals sharing the same home [47], day care centre
[48,49] or even community [50]. For enteric organisms
both transmission and outside introduction occurs
through water, sanitation, hygiene and food pathways—
modes of spread especially strong in agricultural settings
[51] and developing countries [52]. The transmission of
bacteria can occur through these pathways in developed
countries as well, albeit at lower rates.

Typical models of AR are set in controlled environ-
ments such as hospitals, and focus on the competitive
advantage given to resistant bacteria through antibiotic
use. In such models, invasion of resistant bacteria from
the outside is ignored, potentially because the focus of
hospital settings is on the large amounts of antibiotic
use and how they are optimally prescribed (e.g. [13]).
On the other hand, in a community setting, the inva-
sion and the spread of resistant bacteria are an
important determinant of prevalence. The inclusion of
the rate of introduction of antibiotics and its interaction
with transmission and antibiotic use, therefore, is a
central piece of our analysis.
J. R. Soc. Interface (2012)
The complete understanding of the dynamics of AR
spread in the context of social and ecological changes
can only be obtained through a systematic and ecological
perspective as presented in this study. Our data and
analysis support the proposal that understanding the
mechanisms of the evolution and the spread of resis-
tant bacteria require a consideration of the ecological
dynamics that shape microbial population structure
[22]. These dynamics are mediated through factors that
determine selection pressures, routes of transmission
and the invasion of resistant bacteria [22], which may
overwhelm the direct effects of individual antibiotic use
in determining the emergence and dissemination of AR
across communities or regions. In our study region, the
major driver of selection pressure and routes of trans-
mission appears to be a new network of roads, which
have strong influence on the social and ecological environ-
ment and in turn on the health of communities
[37,38,53,54]. Roads may affect the evolution and the
spread of resistant bacteria by influencing the use of anti-
biotics in the human population, changing hygiene and
sanitation and introducing resistant bacteria when
people travel or migrate into a region.
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