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Abstract

Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and
models have been successfully developed for the prediction and assessment of aquatic macroinverte-
brates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method
based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict
freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of
south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a
region of comparatively high environmental variability due to the unpredictable nature of rainfall and
river discharge. The model was concluded to provide sufficiently accurate and precise predictions of
species composition and was sensitive enough to distinguish test sites impacted by several common types
of human disturbance (particularly impacts associated with catchment land use and associated local
riparian, in-stream habitat and water quality degradation). The total number of fish species available for
prediction was low in comparison to similar applications of multivariate predictive models based on
other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from
such studies. In addition, our model developed for sites sampled on one occasion and in one season only
(winter), was able to accurately predict fish assemblage composition at sites sampled during other sea-
sons and years, provided that they were not subject to unusually extreme environmental conditions (e.g.
extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local
fish extinctions).

Introduction

In response to growing concern about the delete-
rious effects of water infrastructure developments,
flow regulation, water pollution and land use
practices on aquatic ecosystems (ANZECC &
ARMCANZ, 2000; Norris et al., 2001), quantita-
tive procedures for assessing aquatic ecosystem
‘health’ and monitoring biotic responses to

remedial management are receiving increasing
attention from scientists and catchment manag-
ers around Australia. Approaches to biotic
assessments of environmental degradation in
aquatic systems include toxicity-testing, use of
biomarkers and a range of methods based on biotic
community structure and ecosystem function
(Bunn, 1995; Harris, 1995). Reference to the
expected natural state (the reference condition
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approach, Reynoldson et al., 1997; Bailey et al.,
2004), whereby disturbance induced change is dis-
tinguished from variation in biotic assemblages
along natural environmental gradients, is now a
common approach to bioassessment. Multivariate
predictive models of biotic community composi-
tion (e.g. Wright, 1995; Clarke et al., 1996; Simp-
son & Norris, 2000; Oberdorff et al., 2001b) and of
summary metrics of community structure and
function (e.g. Index of Biotic Integrity – IBI, Karr,
1981; Karr et al., 1986) form the basis of this
approach.

In Australia, considerable research effort has
been directed toward the adoption of aquatic
macroinvertebrate communities as indicators of
river health using a referential approach (Davies,
2000). Predictive models have been developed that
enable site-specific predictions of benthic macro-
invertebrate community composition expected in
the absence of major human disturbance. The
expected fauna is derived using a small number of
environmental characteristics as predictors of
species composition. By comparing the expected
fauna at a new site, with that observed, an evalu-
ation of the biological integrity of the site is
obtained. This method, based on a predictive
modelling procedure originally developed for
assessing the biological quality of rivers in the
United Kingdom using aquatic macroinverte-
brates – the RIVPACS method (Wright et al.,
1984), has been packaged as AUSRIVAS (the
Australian River Assessment Scheme) and is now
implemented widely throughout Australia under
the National River Health Program (Simpson &
Norris, 2000). Similar predictive models of
diatoms and stream habitat have also been devel-
oped with a view to evaluate their potential use as
indicators of river health in Australia. However,
bioassessment procedures based on fish are how-
ever not well advanced in Australia, despite the
well-documented responses of fish to a wide range
of human disturbances (e.g. Fausch et al., 1990;
Harris, 1995; Karr & Chu, 1999; Hughes &
Oberdorff, 1999; Simon, 1999, 2003).

Harris (1995) suggested that multi-metric
methods such as the IBI were potentially applica-
ble to stream health assessment in Australia and
the IBI has been tested and applied in several
rivers of southern Australia (Harris & Silveira,
1999; Murray Darling Basin Commission, 2004).

Yet, the development of multivariate predictive
models of fish assemblage composition and their
utility in stream bioassessment programs in
Australia has received little attention. These fish-
based predictive modelling methods have been
demonstrated to provide a sensitive tool for bio-
monitoring river health in Europe (Oberdorff
et al., 2001b) and New Zealand (Joy & Death,
2000, 2002, 2003). Joy and Death (2002, 2003)
developed predictive models based on variations of
the RIVPACS approach for low diversity fish
fauna’s in New Zealand streams. These authors
concluded that accurate site-specific predictions of
fish species composition were possible using the
models, and that outputs from the models could
provide a sensitive measure of human impact at
disturbed sites.

In common with other biological indicators,
there are several potential impediments to the use
of fish assemblages as indicators of river health.
The ability to accurately define an expected fish
assemblage in the absence of anthropogenic dis-
turbance is critical, and requires that relationships
between natural environmental conditions and
biota are sufficiently strong that species composi-
tion can be predicted accurately. Both local and
regional scale factors may be important determi-
nants of local variation in fish species composition,
abundance and biomass (Jackson & Harvey, 1989;
Schlosser, 1991; 1995; Schlosser & Angermeier,
1995; Poff, 1997; Angermeier & Winston, 1998).
However, the ability to detect species associations
(Angermeier & Schlosser, 1989) and relationships
with environmental conditions (Pusey et al., 2000;
Williams et al., 2003) may be more difficult in
systems characterised by high environmental var-
iability, such as that associated with high flow
variability, a characteristic of many Australian
steams (McMahon, 1986; Lake, 1995; Puckridge
et al., 1998). Predictive approaches to defining the
reference condition typically also rely on the
assumption that the reference communities from
which predictions are derived are stable through
time, permitting valid comparisons to be made
with tests sites often sampled years afterwards
(Barmuta et al., 2003). The implications of long-
term variation in species assemblages arising from
natural or human-induced variations in environ-
mental conditions related to major climatic cycles
or climate change (Meyer et al., 1999; Mol et al.,
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2000; Puckridge et al., 2000; Metzeling et al.,
2002) is rarely addressed. Another potential diffi-
culty is that low numbers of species available for
modelling (e.g. local fish assemblages are typically
much less diverse than aquatic macroinvertebrate
assemblages) have the potential to bias bioassess-
ments given that the failure to detect a single
species during sampling could result in consider-
able deviations in expected and observed assem-
blages and result in a low sensitivity of predictive
models to detect disturbance at mildly disturbed
sites (Smith et al., 1999; Turak et al., 1999).

This paper forms part of a program designed to
develop indicators of biotic structure and ecosys-
tem function for incorporation into a broad-scale
ecosystem health monitoring program for fresh-
water streams and rivers of south-eastern
Queensland Australia. Here, we construct a
predictive model of fish assemblage composition
based on relationships with a small number of
catchment scale and local scale environmental
features. We construct the model using a set of
least-disturbed reference sites sampled on one
occasion during one season. We evaluate the effect
of low species richness on model performance and
validate the predictive capacity of the model using
two sets of temporally sampled data from refer-
ence sites in two rivers. We also evaluate the sen-
sitivity of the model to detect disturbance at a set
of independent sites sampled along known gradi-
ents of human disturbance brought about by land
use pressures.

Methods

Study area

The study area was confined to coastal south-
eastern Queensland, Australia (Fig. 1), a tem-
perate/subtropical area constituting a single
biogeographic region based on freshwater fish
distributions (Unmack, 2001; Pusey et al., 2004).
The majority of rainfall and streamflow occurs in
the summer months of January to March, often
followed by a second minor peak in discharge
between April and June (Pusey et al., 1993, 2004).
The flow regime of many streams and rivers in
south-eastern Queensland is highly variable on an
inter-annual and seasonal basis: low and high

flows can occur at any time of year, and some
tributaries may cease to flow for extended periods
(Pusey et al., 1993, 2000). Before European set-
tlement, the region was dominated by sclerophyll
forests with substantial areas of sub-tropical
rainforest and coastal ‘wallum’ (Banksia heath-
lands). Human land use practices associated with
extensive land clearing, cattle grazing, agricultural
cropping and large urban and industrial develop-
ments, have led to substantial degradation of local
riparian, in-stream habitat and water quality
conditions in many streams and rivers of the
region. In addition, some of the major rivers are
regulated by large dams and many contain barriers
to fish movements (Kennard et al., 2005).

Reference, validation and test site datasets

A dataset comprising 82 reference sites (least-
affected by human activity) was used to develop
and validate the predictive model. Reference sites
were located in the Mary, Brisbane, Logan and
Albert Rivers (Fig. 1). We selected reference sites
that represented the best condition available
within each river (i.e. undisturbed riparian vege-
tation, bank and channel structure in natural
condition, natural hydrograph, sensu Hughes
(1995)) ensuring that such sites were arrayed suf-
ficiently widely throughout each catchment to
encompass as much of the natural biological and
environmental variation as possible. Site selection
was constrained by sampling methodology (back-
pack electrofishing) and sites were only included if
they were not close to major urban areas, extrac-
tive industries (i.e. mines, quarries and sand/gravel
extraction), intensive agriculture and point source
pollutants, or located upstream of barriers to fish
movement (e.g. dams and weirs that did not
drown-out periodically or lacked fish passage
devices). Potential reference sites were also
excluded if they contained high relative abun-
dances of alien fish species (i.e. >20% the total
number of individuals in a sample).

Seventy-two sites selected randomly from the
reference site database were used for model
construction. Most of these reference sites were
sampled seasonally (winter, spring and summer)
between 1994 and 1997, but numbers of samples
varied among sites and rivers. We constructed the
predictive model using data collected on the first
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Figure 1. Location of reference sites (numbered by classification group membership), validation sites and test sites in south-eastern

Queensland (Note: some sites located close together overlay each other and hence may not visible on map). Major impoundments are

also depicted. The inset shows the location of the study area in Queensland, Australia.
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winter sampling occasion for each site and river.
During the 4-year sampling period, some rivers of
the study regions experienced several discharge
extremes including an 8-year annual return inter-
val flood in January 1996. Furthermore, some
tributaries of the Mary River experienced the
longest period of zero flows on record. We chose
the winter sampling period (between June and
August) as hydrological conditions are more likely
to be characterised by low and stable flows (Pusey
et al., 2000, 2004), but are sufficiently elevated to
allow fish unrestricted longitudinal movement
among river reaches and habitat types. The refer-
ence data used to constructed the model therefore
comprised 25 sites in the Mary River and 16 sites
in the Albert River sampled during winter 1994, 11
sites in the Mary River and six sites in the Albert
River sampled in winter 1995, nine sites in the
Logan River sampled during winter 1996 and five
sites in the Brisbane River sampled in winter 1997.

We evaluated the predictive capacity of the
reference model (based on sites sampled once only
in winter) to predict assemblage structure for time
periods outside of the range used to develop the
model using two validation datasets. The first
comprised a random subset of the original refer-
ence sites that were sampled during spring, sum-
mer and winter between 1994 and 1997 (hereafter
termed ‘internal’ validation samples). This dataset
included nine sites from the Mary River sampled
on nine occasions, and four sites from the Albert
River sampled on seven occasions. Five of these
sites (three in the Mary River and two in the
Albert River) were also sampled again during
September 2000 (n=114 samples). The second
dataset comprised the remaining 10 least-disturbed
reference sites withheld from the original reference
dataset and not used to construct the model
(hereafter termed ‘external’ validation samples).
These sites were also sampled seasonally between
1994 and 1997 (five sites in the Mary River sam-
pled on nine occasions and five sites from the
Albert River and sampled on six occasions (n=86
samples). Three internal validation sites and two
external validation sites were situated on streams
that experienced extended periods of zero flow and
so enabled evaluation of the effects of flow
variability on model predictions.

Forty-eight test sites from six river basins in
south-eastern Queensland were selected to test the

predictive model and to examine whether differ-
ences in observed versus predicted fish assemblage
composition was related to known gradients in
human disturbance (particularly impacts associ-
ated with catchment land use and associated local
riparian, in-stream habitat and water quality
degradation). These test sites ranged from mini-
mally disturbed to highly impacted; see Kennard
et al. (2005) for further description of test sites.
Test sites were sampled once between September
and October 2000. The range of variation in
environmental conditions at the reference sites was
generally similar to, or greater than, the range at
validation and test sites (Table 1). The exception
to this was a small number of test sites located
on streams with slightly smaller catchment areas
(3 sites), or were closer to the river mouth (4 sites).
The spatial separation of reference sites from test
sites in some river basins (i.e. Noosa, Pine Bris-
bane and South Coast) was in part due to a lack of
acceptable reference sites in these catchments
(particularly the Brisbane Basin) and the funding
conditions under which the test site data were
collected. Although this has potential to bias pre-
dictions for sites in these basins, all study rivers
were located within a single bioregion based on
freshwater fish distributions and the reference sites
included a broad range of stream types and habi-
tats; we therefore considered that the three data-
sets (reference, validation and test sites) were
acceptable for initial model development, valida-
tion and testing.

Fish sampling methods

The fish assemblage within an entire meander
wavelength or riffle-run-pool sequence (Newbury
& Gaboury, 1993) was sampled in each stream
reach using a standardised protocol that was
consistent among reference, validation and test
sites. Three contiguous individual mesohabitat
units (i.e. riffles, runs or pools) within each
reach were sampled separately and data subse-
quently combined to represent each site. Each
mesohabitat unit was blocked upstream and
downstream with weighted seine nets (11 mm
stretched-mesh) to prevent fish movement into or
out of the study area. The mesohabitat unit was
sampled using a combination of repeated pass
electrofishing (Smith-Root model 12B Backpack
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Electroshocker) and seine netting until few or no
further fish were collected following the protocol
described and evaluated in Pusey et al. (1998).
These authors showed that intensive sampling
using multiple-pass electrofishing plus supple-
mentary seine netting yielded significantly more
accurate and precise estimates of total species
richness and species composition within individ-
ual mesohabitat units (riffles, runs or pools) in
comparison to less intensive sampling using a
single electrofishing pass only. In a separate
study to be published elsewhere, we evaluated the
length of stream (i.e. number of mesohabitats)
required to gain accurate and precise estimates of

species richness and species composition at the
stream reach scale. Intensive sampling (using
multiple pass electrofishing plus seine netting) of
three mesohabitat units yielded 95% of the total
number of species and about 97% similarity in
species composition to fish assemblage data
obtained for more extensive sampling over six
mesohabitat units (equivalent to 30 stream
widths or 265 m stream length on average). To
control for the effect of variation in channel
morphology and hence the size of the study sites
on fish catches, fish abundances at each site were
transformed to species densities (number of
individuals 10 m)2).

Table 1. Range and median values of environmental predictor variables at reference, validation and test sites

Predictor variable Site type N Minimum Median Maximum

Catchment area (km2) Reference 72 12 145 9734

Internal validation 13 18 141 4851

External validation 10 23 136 3884

Test 48 7 110 930

Distance from source (km) Reference 72 7 34 261

Internal validation 13 10 33 211

External validation 10 11 36 181

Test 48 8 26 94

Distance to mouth (km) Reference 72 28 149 310

Internal validation 13 31 147 292

External validation 10 39 125 292

Test 48 14 127 301

Elevation (m.a.s.l.) Reference 72 0 80 250

Internal validation 13 0 80 220

External validation 10 20 60 180

Test 48 1 96 247

Mean width (m) Reference 72 1.02 7.30 42.73

Internal validation 114* 0 7.29 45.50

External validation 86* 0 7.85 26.20

Test 48 1.18 6.98 19.70

Mean depth (m) Reference 72 0.12 0.37 0.85

Internal validation 114* 0 0.36 0.93

External validation 86* 0 0.38 0.83

Test 48 0.15 0.49 0.84

Mean velocity (m s)1) Reference 72 0 0.16 0.75

Internal validation 114* 0 0.13 0.80

External validation 86* 0 0.13 0.74

Test 48 0 0.02 0.32

N indicates the number of sites for catchment-related variables that were static in time. For environmental variables that varied

through time (at validation sites sampled on multiple occasions), N refers to the number of samples (indicated by *).
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Estimation of environmental variables

Catchment and local scale environmental charac-
teristics of the study sites were estimated according
to a standard protocol described in Pusey et al.
(2004) (Table 1). These variables were considered
to be least affected by human activity and so could
be used as predictors of species composition.
Catchment descriptors for each site were estimated
from 1:100,000 topographic maps using a digital
planimeter or from Geographical Information
Systems (GIS) databases. Site physical character-
istics including mean wetted stream width, mean
and maximum water depth, and mean and maxi-
mum water velocity were calculated from a series
of 40–60 point measurements located randomly
throughout the site.

We characterised the potential sources and
intensity of anthropogenic disturbance at each test
site using a set of variables intended to reflect
disturbance mechanisms operating at both large
and local scales. Catchment land use was charac-
terised by the percentage of the catchment
upstream of each site affected by land clearing,
cattle grazing, agricultural cropping and urbani-
sation. We hypothesised that these large-scale land
use impacts would result in localised changes to
water quality, riparian habitat, and in-stream
habitat conditions that would, in turn, influence
the distribution and abundance of freshwater fish.
A set of basic water chemistry variables (conduc-
tivity, turbidity, pH, total nitrogen, total phos-
phorus, diel range in dissolved oxygen and
temperature) and several simple measures of
riparian and in-stream habitat conditions (riparian
vegetation cover, percentage of mud substrate, and
the abundance of aquatic macrophytes, filamen-
tous algae and submerged vegetation – mostly
terrestrial invasive weeds) were assessed at each
site to describe these potential sources of distur-
bance. We recognise that many of the variables
used to characterise the disturbance gradient may
vary along natural environmental gradients, how-
ever we did not have the capacity to account for
this natural variation in the present study.
We assumed that all disturbance variables were
likely to increase in magnitude with increasing
human disturbance intensity except pH (increase
or decrease) and riparian cover (decrease). Smith
& Storey (2001) and Kennard et al. (2005) provide

further justification and rationale for the use
of these variables to describe the disturbance
gradient.

Statistical methods

We developed a multivariate predictive model
of fish species composition based on the RIVP-
ACS modelling approach (Wright et al., 1984;
Moss et al., 1987) and its derivative AUSRIVAS
(Simpson & Norris, 2000). Detailed descriptions of
the statistical procedures can be found in Wright
(1995) and Clarke et al. (1996); only a brief outline
is given here. The 72 reference sites were first
classified into groups with similar species compo-
sition using an agglomerative hierarchical fusion
technique (unweighted pairwise group arithmetic
averaging in the PATN pattern analysis package –
Belbin, 1995). This classification was performed on
a site-by-site association matrix derived using the
Bray-Curtis dissimilarity measure (Bray & Curtis,
1957), following the recommendation of Faith
et al. (1987). Classification of the 24 species data
set (one species present at one site only was
excluded from the database) was based on
log10 (x+1) transformed species densities at each
site as preliminary classification based on the
presence or absence of fish species resulted in less
well-defined classification group structure. Groups
of sites were selected by viewing a dendogram
representation of the classification. Stepwise dis-
criminant analysis (using the STEPDISC proce-
dure in SAS; SAS Institute, 1988) was used to
identify those environmental variables best able to
discriminate between reference site groups derived
from the classification analysis. All environmental
variables were log10 (x+1) transformed to help
satisfy the assumptions of discriminant analysis
that predictor variables are normally distributed
and that within-group variances are homogenous
(Tabachnik & Fidel, 1989). Environmental vari-
ables that contributed significantly (p<0.05) to
group discrimination were classed as predictor
variables for subsequent model development, val-
idation and testing. Multiple discriminant func-
tions analysis with cross-validation (using
DISCRIM procedure in SAS; SAS Institute, 1988)
was used to estimate probabilities of group mem-
bership for each reference site on the basis of
those significant environmental predictor variables
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identified above. The discriminant functions model
was then used to calculate probabilities of group
membership for the validation sites and test sites
on the basis of their environmental characteristics.
The probability of occurrence (PO) of a species at
a new site was estimated by weighting the fre-
quency of occurrence of each fish species in each of
the reference site groups (i.e. the proportion of
sites in each group in which the species occurs) by
the probability with which the site belonged to
each reference group (from the discriminant
functions model) (Wright, 1995). We considered
all species with greater than 0% probability of
occurrence (PO0) and 50% probability of occur-
rence (PO50) in order to examine whether the
removal of taxa with a low chance of occurrence
improved the accuracy and precision of the model
(Simpson & Norris, 2000). We chose this some-
what arbitrary threshold as it is frequently used in
RIVPACS-style applications in Australia and
North America, and it allowed us to compare the
accuracy and precision of our models. The number
of taxa expected at each test site was equal to the
sum of the individual probabilities of all the pre-
dicted taxa greater than the PO0 and PO50

thresholds (the number of expected taxa is there-
fore always less than the number of predicted taxa
as individual species may often have less than
100% predicted probability of occurrence). The
number of observed taxa at each test site is that
number of taxa predicted to occur and which
actually do so. The number of observed taxa was
divided by the number of expected taxa to give an
O/E ratio for each PO threshold (i.e. O/E0 and
O/E50). The O/E ratio gives an indication of the
degree of fidelity between the fish assemblage
observed at a test site with that expected and
theoretically, is an indication of the predictive
capability of the model (the closer to 1.0, the better
the match between observed and expected assem-
blage) (see Moss et al., 1987; Wright, 1995).

We performed several internal tests of the
accuracy and precision of the reference site model
and whether the choice of PO threshold influenced
model performance. For each PO threshold, we
compared frequency distributions, means and
standard deviations of O/E scores generated for the
reference sites used to construct the model. We also
compared variation in mean O/E scores generated
for reference sites from each classification group,

each river and each year of sampling to evaluate
whether any systematic biases were apparent due to
these factors. For each PO threshold, we also
evaluated the match between O and E using simple
linear regression models. We compared the amount
of variance explained by each regression model
(R2) and compared the slopes and intercepts of the
regression line (with the null hypothesis that the
slope of the relationship is not significantly differ-
ent from 1 (p>0.05) and that the intercept does not
differ significantly from 0). For each PO threshold
we also compared the width of the 10th and 90th
percentile of the distribution of reference site scores
as a further test of model error and to establish
reference thresholds for further model validation
(hereafter termed ‘reference’ bands). We evaluated
whether the total number of species at a site biased
model predictions by regressing species richness
against reference sites’ O/E scores generated at
each PO threshold and comparing the R2 and slope
of each relationship.

Model validation and the effect of temporal
variation on model performance

For each validation data set we evaluated how well
the reference model could predict species compo-
sition at new sites and samples by comparing the
match between expected and observed species
using simple linear regression. We used t-tests to
determine if mean O/E scores for each validation
data set differed significantly from those of refer-
ence sites. To examine the effect of temporal
variation on the predictive capacity of the model,
we used an approach similar to Barmuta et al.
(2003). For each data set we examined whether the
rank order of O/E scores for sites within each river
was preserved over time (hereafter referred to as
site concordance) using Friedman’s two-way
analysis of variance for ranks (Zar, 1996). For
each data set and river, the O/E scores were ranked
across sites within each sample period and the
Friedman’s analysis tests whether the ranked val-
ues are consistent across sampling periods. A
significant value of the test statistic indicates that
sites do not differ in their ranks. Kendall’s coeffi-
cient of concordance was also calculated to
quantify the degree of synchrony of the ranking
of site O/E scores: 1 indicates perfect synchrony
or concordance; 0 indicates no synchrony or
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concordance. We also examined whether there
were any strong, systematic trends in O/E scores
through time using a one-way repeated measures
analysis of variance using sites as ‘‘subjects’’, and
Huynh-Feldt corrected p-values were used to
assess linear, quadratic or cubic trends for each
data set (Zar, 1996). Finally, we examined whether
O/E score for temporal samples of validation sites
remained within the reference band (based on the
90th–10th percentile of reference site O/E scores).

Model testing and sensitivity to disturbance

The sensitivity to human disturbance of our pre-
dictive model based on variation in fish assem-
blage composition was evaluated by predicting fish
assemblage composition at the 48 test sites and
generating O/E scores for each site. We used t-tests
to determine if mean O/E scores for the test sites
differed significantly from those of reference sites.
We related test site O/E scores to a suite of vari-
ables describing the source and intensity of dis-
turbance at the test sites. A Principal Components
Analysis (PCA) was used to reduce the 16 distur-
bance variables (log10 (x+1) transformed) to a
smaller number of orthogonal components, to
avoid the potential problem of correlation between
predictor variables. The PCA was based on the
correlation matrix, and loadings of the original
variables on each of the first five principal com-
ponents were used to identify the dominant dis-
turbance gradients in the dataset. Importantly, the
disturbance gradients identified by the PCA anal-
ysis did not appear to be confounded by variation
along the natural environmental gradients used to
model fish species composition. No strong rela-
tionships existed between disturbance gradient
principal component scores and catchment-scale
descriptors (catchment area, elevation, distance to
river mouth) and local site physical characteristics
(mean wetted width, mean depth, mean velocity)
(Spearman’s correlations, p>0.05, Kennard et al.,
2005). We therefore assumed that any observed
relationships between disturbance gradients and
departures in species composition from that pre-
dicted at test sites were real and not artefacts due
to co-variation along natural environmental gra-
dients. Stepwise Generalised Linear Modelling
(GLM) was used to predict O/E scores on the basis
of the disturbance gradient principal components.

The amount of variance (R2) explained by the
model was used as an indication of the ability of
O/E scores to reflect the disturbance gradient.
Non-parametric Kruskal–Wallace rank tests were
used to further elucidate the relationship between
the disturbance variables and the presence or
absence of each species. The magnitude of indi-
vidual disturbance variables at those sites where
each species was predicted to occur but was not
observed, were compared with corresponding val-
ues at sites where species were present as predicted,
and at sites where species were present but not
predicted to occur. These analyses were conducted
using S-PLUS 2000 (Statistical Sciences, 1999).

Results

Freshwater fish fauna and biological
characteristics of the reference data set

Quantitative sampling of the fish fauna in the 72
least-disturbed reference sites in the Mary, Bris-
bane, Logan and Albert Rivers resulted in the
collection of 24 species and 18,431 individuals.
Six species (Retropinna semoni, Melanotaenia
duboulayi, Craterocephalus marjoriae, Hypseleotris
galii, Pseudomugil signifer and Anguilla reinhardtii)
collectively comprised 75% of the total number
of fish collected. The most widespread species
collected across the four reference rivers were
A. reinhardtii, M. duboulayi, Tandanus tandanus
and R. semoni, occurring in 75% of reference sites.
Pseudomugil signifer, H. galii C. marjoriae, and
H. klunzingeri were also relatively widespread,
occurring in 50% of sites.

Model development: classification and
discriminant analysis

We recognised five groups of samples from the
UPGMA classification of the 72 reference sites
based on fish assemblage structure (log10 (x+1)
transformed species densities. Each classification
group contained sites from each river (Fig. 1) and
contained sites sampled in each year (data not
shown) implying little biogeographic variation
between rivers or systematic annual variation in
species assemblages. Stepwise discriminant func-
tions analysis revealed that six environmental
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Table 2. Mean density (number of fish 100 m)2) (±SE) and frequency of occurrence (percentage of sites) of the 24 fish species within

each of the five reference site groups defined by UPGMA classification

UPGMA reference group 1 2 3 4 5

Number of sites 11 8 13 26 14

Fish taxa

Anguillidae

Anguilla reinhardtii 8.48±6.22 (100) 1.48±0.57 (75) 1.63±0.27 (92) 9.88±1.86 (96) 1.84±0.68 (86)

A. australis 0.05±0.04 (18) 0.05±0.05 (8) 0.05±0.02 (15) 0.11±0.11 (7)

Retropinnidae

Retropinna semoni 0.27 ± 0.13 (36) 0.86 ± 0.72 (38) 12.70 ± 5.91 (62) 24.81 ± 4.53 (100) 14.36 ± 7.13 (93)

Plotosidae

Tandanus tandanus 0.31±0.11 (64) 2.28±0.65 (88) 5.18±1.11 (85) 3.10±0.74 (81) 1.60±0.60 (86)

Neosilurus hyrtlii 0.39±0.39 (13) 0.05±0.05 (8) 0.01±0.01 (4)

Atherinidae

Craterocephalus marjoriae 0.01 ± 0.01 (9) 0.02 ± 0.02 (13) 15.28 ± 7.66 (85) 7.90 ± 2.93 (81) 25.49 ± 10.29 (79)

C. stercusmuscarum 0.08 ± 0.05 (18) 2.04 ± 1.87 (38) 5.87 ± 3.00 (69) 1.50 ± 0.87 (23) 0.17 ± 0.15 (14)

Melanotaeniidae

Melanotaenia duboulayi 0.92±0.53 (73) 8.16±2.98 (88) 22.57±5.35 (100) 23.42±5.20 (85) 9.54±3.14 (93)

Pseudomugilidae

Psuedomugil signifer 1.65±1.01 (82) 1.39±0.86 (38) 16.14±3.81 (100) 1.65±0.60 (46) 16.79±3.77 (86)

Synbranchidae

Ophisternon sp. 0.02±0.02 (7)

Scorpaenidae

Notesthes robusta 0.07±0.06 (18)

Chandidae

Ambassis agassizii 1.34±1.07 (18) 5.06±3.44 (38) 9.16±2.83 (69) 1.61±1.02 (23) 1.04±0.81 (36)

A. marianus 0.28±0.28 (9)

Therapontidae

Leiopotherapon unicolor 0.04±0.04 (9) 0.30±0.27 (25) 1.75±0.92 (46) 0.12±0.09 (12) 0.01±0.01 (7)

Apogonidae

Glossamia aprion 0.21±0.19 (18) 1.72±1.06 (54) 0.56±0.56 (4)

Eleotridae

Gobiomorphus australis 1.76±1.21 (36) 0.56±0.48 (25) 0.21±0.12 (23) 0.95±0.49 (23) 0.07±0.06 (14)

G. coxii 0.05±0.03 (15)

Hypseleotris galii 0.79±0.51 (27) 61.48±21.38 (100) 20.50±8.89 (92) 2.05±0.71 (54) 2.06±0.63 (64)

H. klunzingeri 7.28±4.83 (64) 7.03±3.04 (63) 21.45±7.34 (100) 3.21±1.31 (54) 0.15±0.09 (21)

H. compressa 3.92±2.58 (45) 0.09±0.09 (13) 0.75±0.65 (23) 0.03±0.03 (4) 0.34±0.34 (7)

Mogurnda adspersa 0.63±0.47 (36) 5.93±5.32 (50) 9.92±4.51 (77) 1.92±0.98 (64)

Philypnodon sp. 0.22±0.16 (27) 0.06±0.06 (13) 3.24±2.40 (46) 0.11±0.08 (12) 0.89±0.62 (43)

P. grandiceps 8.56±8.41 (27) 0.03±0.03 (13) 1.40±1.22 (31) 0.53±0.31 (27) 0.32±0.24 (21)

Gobiidae

Redigobius bikolanus 0.30±0.30 (9)

Environmental variables F

Elevation (m.a.s.l.) 33.6±13.6 85.0±21.6 67.7±7.4 96.9±11.3 101.4±14.9 8.9

Distance to mouth (km) 118.9±22.7 176.7±27.9 182.1±17.1 136.1±15.4 202.2±24.3 8.2

Mean velocity (m s)1) 0.16±0.05 0.10±0.04 0.08±0.02 0.26±0.03 0.20±0.03 5.4

Mean depth (m) 0.51±0.06 0.44±0.06 0.38±0.03 0.34±0.02 0.36±0.05 5.3

Mean width (m) 19.8±3.4 7.4±1.3 12.2±3.3 8.7±0.9 6.3±0.6 4.7

Distance from source (km) 100.8±22.9 29.7±8.7 58.5±9.7 45.4±5.9 26.1±4.9 3.9

Also shown are mean values (±SE) and F values for environmental variables identified by stepwise multiple discriminant analysis as

being significant predictors of UPGMA classification group membership (p<0.001).
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variables could significantly discriminate between
site groups (Table 2, p<0.001). These results sug-
gest a strong association between catchment scale
(stream size and relative site position within the
catchment) and local scale (mean depth and mean
water velocity) environmental variables and fish
assemblage structure. Lowland, main channel sites
(e.g. group 1) were wide and deep and were char-
acterised by the presence and/or high densities by
the diadromous species Anguilla reinhardtii,
Notesthes robusta, A. marianus, Gobiomorphus
australis, H. compressa and Redigobius bikolanus
(Table 2). Deep, slow flowing sites located higher in
the catchment (e.g. group 2 and 3 sites) were
characterised by the presence and/or high densities
of T. tandanus, C. s. fulvus, Ambassis agassizii,
H. galii, H. klunzingeri and Mogurnda adspersa.
Shallow, fast flowing headwater sites (group 4 and
5 sites) contained G. coxii and had higher densities
of R. semoni, C. marjoriae, M. duboulayi and
Gobiomorphus coxii. Multiple discriminant func-
tions analysis (MDFA), successfully classified 67%
of the 72 reference sites into the groups to which
they were assigned on the basis of similarities in fish
assemblages. A further 15% of sites were allocated
to the correct group with the next highest proba-
bility.

Internal consistency of predictive model

Mean Observed/Expected ratios calculated for the
predicted and observed fish faunas at probability
of occurrence thresholds >0% (PO0) and >50%

(PO50) were close to unity (mean O/E0=0.99±0.25
SD, O/E50=1.00±0.20) implying that overall,
both PO thresholds produced unbiased estimates
of the number of species at the reference sites
(Table 3). However, comparisons of mean O/E
scores between reference site classification groups
indicated that the model tended to over-estimate
the number of species expected at low diversity
sites (mean O/E scores <1.0 for reference groups 1
and 2 where the mean numbers of species observed
was lowest) and underestimate high diversity sites
(group 3) (mean O/E scores >1 for group 3 where
the mean number of species observed was highest)
(Table 3). This bias was more apparent at PO0

than PO50 (i.e. O/E50 scores were closer to unity
than O/E0). Mean O/E scores calculated for ref-
erence sites sampled in each river or year were
close to unity, indicating relatively little systematic
bias in estimates of species richness due to these
factors (data not shown). The standard deviation
of OE50 scores was lower than that of O/E0 sug-
gesting that there was greater error predicting rare
species than common ones (Table 3). Frequency
distributions of reference site O/E scores at PO50

were more tightly distributed around unity than
those generated at PO0 (Fig. 2), resulting in a
narrower width of the reference band (90th–10th
percentile) (Table 3), also suggesting greater pre-
cision in the match between observed and expected
assemblages. The relationship between the number
of species expected and observed was stronger for
the PO50 level (R

2=0.69) in comparison to the PO0

level (R2=0.43) (Fig. 3a and b). Although not

Table 3. Means and standard deviations of the expected number of species (sum of the predicted species probabilities of occurrence),

the observed number of species and Observed/Expected ratios for reference sites used to construct the model and calculated using

probability of occurrence thresholds of PO>0% and PO>50%

Probability of occurrence >0% (PO0) Probability of occurrence >50% (PO50)

Expected Observed O/E0 Expected Observed O/E50

All reference sites 8.29±1.31 8.25±2.76 0.99±0.25 (0.63–1.34) 6.10±1.56 6.15±2.21 1.00±0.20 (0.68–1.27)

Group 1 8.42±0.83 7.18±1.60 0.85±0.21 5.31±1.54 4.73±1.10 0.89±0.18

Group 2 8.17±1.05 7.13±2.47 0.86±0.24 5.35±1.06 4.88±1.64 0.91±0.17

Group 3 9.36±1.02 11.62±2.22 1.24±0.20 7.74±1.56 8.62±2.02 1.11±0.16

Group 4 7.62±1.31 7.46±2.21 0.98±0.24 5.49±1.19 5.65±1.60 1.03±0.16

Group 5 8.50±1.37 8.07±2.81 0.94±0.24 6.58±1.58 6.64±2.44 1.00±0.20

The width of the reference band (90th–10th percentile of all O/E scores) for each PO threshold is given in parentheses. Means and

standard deviations for species metrics at reference sites within each classification group are also shown.
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significant (p>0.05), the higher slope of the
regression relationship between E and O (1.37
versus 1.16 for PO0 and PO50, respectively) and the
lower intercept ()3.15 versus )0.92) suggest that
PO0 was more strongly biased than PO50, tending
to over-estimate the number of species expected
when observed species richness was low and
under-estimate when species richness was high,
supporting the conclusion reached earlier (Fig. 3a
and b). Evaluation of the effect of the total number
of species per site on model performance and
predictive accuracy further revealed the stronger
relationship between the total number of species at
a site and the corresponding O/E scores at the PO0

level in comparison to the PO50 (R2=0.70 versus
0.33), although the slopes of both regression rela-
tionships were significantly greater than zero
(p<0.001) (Fig. 3c and d). This indicates that O/E
scores generated at each probability level are
influenced by the total number of species present
at a site but that this effect is greater when rare
species are included in the prediction of the
number of species expected. We conclude that
PO50 produces more accurate and precise esti-
mates of the number of species expect at a site and
so use this probability of occurrence threshold for
further model validation and testing.

Validation of predictive model and effect
of temporal variation on model accuracy

The relationships between the number of spe-
cies expected and observed at validation sites
was strong both for reference sites used in
model development and sampled subsequently
(R2=0.59, Fig. 4a) and for sites and samples
foreign to the reference model (R2=0.62,
Fig. 4b). The slopes (not significantly different
from 1, p>0.05) and intercepts (not significantly
different from 0, p>0.05) of the regression lines
for both sets of validation data, indicate little bias
in the ability of the reference model to predict
species composition at new sites and samples
at PO50. Mean O/E50 scores for internal and
external validation data sets did not differ sig-
nificantly from the mean of reference site O/E50

scores (internal validation mean O/E50=0.97±
0.27 SD; t=)0.76, df=184, p>0.05; external
validation mean O/E50=1.04±0.18 SD; t=1.26,
df=155, p>0.05). The apparent greater ability of
the reference model to predict fish assemblage
composition at sites and samples foreign to the
model (i.e. external validation sites) seems coun-
ter-intuitive and we attribute this to the fact that
these sites contained intermediate numbers of
species which the model was least biased in being
able to predict (see above).

The degree of temporal concordance and
synchrony of ranked O/E scores was generally
weak among rivers and validation data sets
(Fig. 5, Table 4). Friedman’s tests revealed that
the ranking of sites from the Mary River was
preserved through time to a greater degree (i.e.
higher Friedman’s test statistics) than sites in the
Albert River for each validation data set, but this
concordance was weakly significant (p=0.02)
only for the internal validation data set (Table 4).
Little evidence of synchrony in temporal oscilla-
tions of ranked O/E scores was observed in each
data set or river (Kendall’s coefficients of con-
cordance all <0.34). Despite this general lack of
concordance, no significant trends in O/E scores
for each river and data set were detected by one-
way repeated measures ANOVA (Table 4). These
results suggest that sites fluctuate though time,
but in an inconsistent manner, and that the lack
of any strong trends implies that systematic biases
accruing over time are relatively weak. For most

Figure 2. Frequency distributions of observed over expected

ratios for the 72 reference sites at probability of occurrence

thresholds of PO>0% (open bars) and PO>50% (closed bars).
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sites O/E scores for each sampling occasion
remained within the reference band (Figs. 5a, b
and 6a), indicating that temporal variation was
not marked enough to reduce the confidence of
the model predictions based on one season
(winter) when the model was applied to new sites
and/or sampling occasions. O/E scores for the
five internal validation sites sampled in spring
2000 were also within the reference band, indi-

cating that the reference model could accurately
predict forward in time (Fig. 5a). Four sites in
the Mary River showed a very high degree of
temporal variation, with O/E scores falling below
the reference band on several occasions (Fig. 5a
and b). These sites were located on tributary
streams that ceased to flow for prolonged periods,
becoming either small isolated pools or desiccat-
ing completely.

(a)

(c)

(b)

(d)

Figure 3. Relationship between expected and observed values for (a) PO0 and (b) PO50 probability of occurrence thresholds at

reference sites. The diagonal dashed lines represent the line of perfect agreement between the two measures. Regression lines and

equations for each plot are also shown. For each PO threshold, p>0.05 for Ho: slope=1 and Ho: Intercept = 0. Also shown are the

relationships between the total number of species observed at reference sites and (c) O/E0 and (d) O/E50 scores. For each PO threshold,

p<0.001 for Ho: slope=0.
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Testing the ability of the predictive model to
detect human disturbance

Fish assemblage composition at the 48 test sites
subject to known gradients of disturbance was
often substantially different from that predicted by
the model. Mean O/E50 scores across all test sites
(mean 0.64±0.31 SD) were significantly lower
than mean reference site scores (t=)7.75, df=118,
p<0.0001) and O/E50 scores for 27 of the 48 sites
were lower than the reference band (Fig. 6b): this
latter result is suggestive of biological impairment
at these test sites. A multiple regression model
using disturbance gradient principal components
(Table 5) as predictors of variation in O/E50 scores
at test sites was highly significant (p<0.001) and
could explain 60% of the variance in the data
(Table 6). The regression model selected three
disturbance principal components as predictors,
with the components describing catchment land
use, water quality and in-stream habitat degrada-
tion (PC1, PC4 and PC5 – Table 5).

Examination of individual species predictions
and patterns of occurrence revealed more detailed
information about the sources of disturbance
potentially affecting each species. For example, the

Australian smelt (R. semoni) was predicted to
occur at all 48 sites (at PO50) but was observed at
only 21 of these sites. Sites in which R. semoni was
predicted to occur, but did not, had a significantly
higher percentage of their upstream catchments
subject to land use pressures (i.e. high % cropped
and % urban), poor water quality (high conduc-
tivity, high diel dissolved oxygen fluctuations and
high turbidity), and degraded in-stream habitat
condition (high % mud) (Fig. 7). These results
suggest that R. semoni is sensitive to a wide range
of disturbances imposed at catchment to micro-
habitat scale. Land use factors were also associ-
ated with the absence of A. reinhardtii,
T. tandanus,M. duboulayi andH. klunzingeri. Poor
water quality was associated with the absence of
C. marjoriae, A. agassizii and H. klunzingeri and
abundant growths of filamentous algae and
aquatic plants were associated with the absence of
M. duboulayi and P. signifer, respectively (Fig. 7).
Occasionally, species were present at some sites,
despite not being predicted to occur there by the
model. For example, C. stercusmuscarum was
observed at seven sites in which this species was
not predicted to occur (Fig. 7). These sites were
characterised by a relatively high percentage of

(a) (b)

Figure 4. Relationship between expected and observed values for (a) internal validation samples and (b) external validation samples at

the PO50 probability of occurrence threshold. The five internal validation sites sampled during spring 2000 are shown as black

diamonds (note that two sites directly overlie each other on the plot). The diagonal dashed lines represent the line of perfect agreement

between the two measures. Regression lines and equations for each plot are also shown. For each dataset, p>0.05 for Ho: slope = 1

and Ho: Intercept=0 .
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urban development in the catchment, high total
nitrogen levels and high amounts of filamentous
algae. These results may indicate that C. stercus-
muscarum can successfully colonise sites affected
by human activities that result in nutrient enrich-
ment and abundant algal growths, or they may be
indicative of inaccuracies in the predictive model.

Discussion

Humphrey et al. (2000) envisaged that regions
subject to strongly seasonal and/or unpredictable
environmental fluctuations would be less amenable
to the development and application of predictive
models of species composition as the basis for

(a)

(b)

Figure 5. Temporal variation in O/E50 scores for (a) internal validation samples and (b) external validation samples in the Mary River

(open circles) and Albert River (closed circles). The 90th–10th percentile reference band is depicted with horizontal dashed lines.

Internal validation sites sampled in Winter 1994 (Fig. 5a) were included in the reference data set used to construct the model and were

used to derive O/E50 scores for theses samples, all other samples were foreign to the model.
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stream health assessment. The data from which
our predictive model was developed, validated and
tested comes from a region of comparatively high
environmental variability due to the unpredictable
nature of rainfall and river discharge (Pusey et al.,
1993, 2000, 2004). Yet the model could provide

reasonably accurate and precise predictions of
species composition and appeared sensitive
enough to distinguish sites impacted by human
disturbance.

The reference condition approach used here
required that strong relationships exist between

Table 4. Results of Friedman’s test of concordance (FR) and Kendall’s coefficient of concordance (KCC) in OE50 scores at internal

validation sites and external validation sites in the Mary and Albert Rivers

Data set Internal validation External validation

River Mary (n=9) Albert (n=4) Mary (n=5) Albert (n=5)

Concordance

Fr 20.26 8.75 15.19 5.66

d.f. 9 7 9 6

p 0.02 0.27 0.09 0.46

KCC 0.250 0.313 0.338 0.189

Trend

Repeated Measures ANOVA

F 2.57 1.50 1.87 1.11

d.f. 9,72 6,21 9,36 6,24

p 0.06 0.24 0.17 0.38

Numbers of sites in each data set and river are given in parentheses. Also shown are F statistics and p values for one-way repeated

measures analysis of variance values to test for trends in O/E50 scores through time.

(a) (b)

Figure 6. Frequency distributions of O/E50 ratios for (a) reference, internal validation and external validation sites and (b) reference

and test sites. Vertical dashed lines indicated the width of the reference band.
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stream biota and environmental predictor
variables least affected by human activity. Our
predictive model indicated that spatial variation
in freshwater fish assemblage composition in
south-eastern Queensland streams can be related
to a small set of variables describing catchment
scale (elevation, and relative site position within
the stream network) and local scale environmen-
tal features characterising the reference sites
(wetted width, depth and water velocity) (see also

Pusey et al., 1993, 2000). These potential ‘land-
scape filters’ (sensu Poff, 1997) are sufficiently
correlated with fish assemblage composition that
a predictive model could be developed to describe
these relationships. The predictive capacity of our
model would undoubtedly be improved by the
inclusion of additional environmental predictor
variables of potential ecological importance to
fish in the region (e.g. variables describing
hydrology, substrate composition and in-stream

Table 5. Principal components analysis of 16 disturbance variables from the 48 test sites in south-eastern Queensland

Variable Principal component

1 (25.5%) 2 (16.6%) 3 (13.2%) 4 (12.1%) 5 (11.6%)

% catchment grazed 0.83 0.04 0.07 0.17 0.06

Temperature diel range 0.70 0.30 )0.21 )0.14 )0.26
pH 0.69 0.31 )0.15 0.02 )0.06

% catchment cleared 0.68 0.08 0.29 0.33 0.37

Conductivity 0.57 0.41 0.26 0.36 0.05

% aquatic macrophytes 0.03 0.84 0.06 )0.06 0.19

% filamentous algae 0.18 0.76 )0.12 )0.06 )0.04

Dissolved oxygen diel range 0.48 0.69 0.01 0.14 0.10

% riparian cover )0.42 )0.55 )0.06 0.18 0.04

Total nitrogen 0.04 0.01 0.95 0.07 )0.02
Total phosphorus )0.06 )0.03 0.95 )0.02 0.05

Turbidity 0.09 )0.18 )0.15 0.80 0.17

% mud 0.18 0.05 0.10 0.75 0.06

% catchment cropped )0.11 0.48 0.30 0.57 )0.29

% catchment urban )0.17 )0.06 0.25 0.25 0.77

% submerged terrestrial vegetation 0.09 0.21 )0.18 )0.05 0.76

The percentage variation explained by each component is given in parentheses and the highest variable loadings on each principal

component are shown in bold type (from Kennard et al., 2005).

Table 6. Summary of multiple regression model to predict variation in O/E50 scores at the 48 test sites according to variation in the

disturbance gradient variables (principal components)

Principal component Description OE50 (%)

PC1 Intensive catchment land use (clearing and grazing) and

degraded water quality (high diel temperature range, pH and conductivity)

27.0

PC2 Degraded riparian vegetation, aquatic plant infestation and high diel DO range 0

PC3 High nutrients 0

PC4 Intensive catchment land use (cropping), degraded habitat

(muddy substrate) and high turbidity

23.3

PC5 Intensive catchment land use (urbanization) and degraded habitat

(submerged terrestrial weeds)

9.4

GLM R2 59.7

The approximate model R2 and the relative importance of each predictor variable fitted in the model (indicated by the percent of total

variance explained) is given.
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habitat structure). However, these environmental
factors may also be influenced greatly by human
activity and their use as predictor variables
increases the potential for biased predictions,
particularly if the models are to be used to pre-
dict species composition at test sites potentially

impacted by anthropogenic flow regime changes
or in-stream habitat modification. The scope of
the predictive model could be improved by
including additional reference sites that encom-
pass a greater range of biological and environ-
mental conditions in the south-eastern

Figure 7. Difference in mean values (±SE) of disturbance variables significantly different at sites where each species was predicted (at

the PO50 level) and observed to occur (open bars), sites where each species was predicted to occur but was not observed (closed bars),

and sites where each species was not predicted to occur but was observed (hatched bars). Chi-square values for Kruskal Wallace tests

are given for each comparison; all were significant at p<0.05 after correction for multiple comparisons using the Dunn-Sidak

procedure (Quinn & Keough, 2002). Sample sizes for each site category are shown below the x-axis of each plot.
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Queensland region. In particular, reference sites
on short coastal streams of the Noosa, Pine and
South Coast drainage basins need to be sampled
and incorporated into an updated version of the
predictive model. We view the predictive models
developed in the present study to be dynamic and
that further model development be an iterative
process whereby new sites are added to the
reference site database as they become available
and that models be updated periodically.

Overall, the model produced reasonably accu-
rate and precise predictions of the number of
species at the reference sites, although accuracy
and precision varied with the choice of species
probability of occurrence thresholds. Internal
validation procedures revealed that the model
tended to over-estimate the number of species
expected at low diversity sites and underestimate
for high diversity sites. Greater accuracy and pre-
cision in the match between observed and expected
assemblages was obtained when rare species with
low probabilities of occurrence were excluded
from predictions using a probability of occurrence
threshold >50%. This was confirmed by external
validation of the model, where species predictions
at PO50 closely matched those observed. These
results support the conclusions of Hawkins et al.
(2000) and Bailey et al. (2004) that omission of
rare taxa can improve robustness of predictive
models. Bailey et al. (2004) argued that the
absence of taxa with low probability of occurrence
at test sites is unlikely to convey meaningful
information about the condition of that site, as
they have a high probability of being absent
by chance alone. However, the exclusion of rare
species has potential to reduce the sensitivity of an
assessment of the health of a site and may under-
estimate the difference between undisturbed and
impacted sites (thereby increasing the chance of
committing a type II error) (Cao et al., 1998,
2001). Rare taxa may be more vulnerable to dis-
turbances (due to restricted distributions coupled
with low abundances) (Cao & Williams, 1999; Cao
et al., 2001), implying that examination of the
presence or absence of a complement of rare taxa
may provide further information as to the health
of a site. Low overall taxon richness does have the
potential to bias model predictions given that the
failure to detect a single species during sampling
could result in considerable reduction in the O/E

score at a test site. Low numbers of species ex-
pected can also result in a low sensitivity of the
model (i.e. low precision) to detect disturbance at
mildly disturbed sites (Smith et al., 1999; Turak
et al., 1999). In the present study, the total number
of fish species available for prediction (24 species)
and the number of species expected to occur at
PO50 (average of six species), was less than half
that typically available in applications of RIVP-
ACS-style models based on aquatic macroinver-
tebrates, diatoms or habitat categories (e.g.
Marchant et al., 1997; Chessman et al., 1999;
Davies et al., 2000). Nevertheless, the precision of
our model was comparable to outcomes from
these studies (SD of reference site O/E50=0.20,
width of reference band=0.59). Although their
model appeared less precise (SD of O/E0=0.45),
Joy & Death (2002) successfully developed a pre-
dictive model based on a total of only 13 fish
species, with less than five species usually expected
at PO0, and concluded that the model was suffi-
ciently sensitive for impacted sites to be detected.
These authors suggested that sites containing few
species resulted in unstable O/E ratios at PO>50%.
Our results appear contrary to this and clearly
indicate that low numbers of species at a site can
result in less reliable predictions at PO0 and that
the accuracy and precision of predictions is im-
proved by eliminating species with a low proba-
bility of occurrence.

Strategies to maximise the number of species
available and thereby improve predictive model-
ling capabilities include the pooling of reference
site data from multiple habitats (Parsons & Norris,
1996) and/or from several seasonal sampling
occasions (Furse et al., 1984; Simpson & Norris,
2000) in an attempt to account for species turnover
across local spatial scales and between seasons. We
minimised the potential for missing a species due
to under-sampling by employing a robust stan-
dardised sampling regime designed to ensure that
the majority of species present in a range of habitat
types within a river reach were actually collected.
The potential benefits of developing a model based
on combined seasons data will be explored else-
where.

Temporal variation in fish assemblage compo-
sition did not influence our ability to predict spe-
cies composition through time. Sites did not
appear to fluctuate concordantly in their O/E
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scores based on common fish species. However,
changes in site rankings through time are a fairly
stringent test of temporal concordance (Barmuta
et al., 2003) and for most sites, O/E50 scores for
each sampling occasion remained within the ref-
erence band, indicating that temporal variation
was not sufficiently great to reduce the confidence
of the model predictions based on one season
(winter) when applied to new sites and/or sampling
occasions. Factors such as taxonomic richness
(Micheli et al., 1999; Cottingham et al., 2001),
taxonomic resolution (e.g. family versus species
data, Metzeling et al., 2002), inclusion of rare
species (Grossman et al., 1991, Robinson et al.,
2000) and data type (e.g. abundance versus pres-
ence absence, Meffe & Minckley, 1987; Boulton
et al., 1992; Humphrey et al., 2000; Oberdorff
et al., 2001a; Metzeling et al., 2002; Paller, 2002;
Scarsbrook, 2002) can affect impressions of the
degree of temporal variability or persistence
of biotic communities and can affect the precision
of biotic assessments made on the basis of these
data (Linke et al., 1999; Townsend & Riley 1999;
Reece et al., 2001; Reynoldson et al., 2001; Metz-
eling et al., 2002; Barmuta et al., 2003). Our data
based on species presence absence at probabilities
of occurrence >50% was more robust to temporal
variations as rare species were excluded from the
predictions (i.e. while not presented here, O/E0

scores fluctuated more through time than O/E50

scores).
Four sites in the Mary River were highly vari-

able through time, with O/E50 scores falling below
the reference band on several occasions (Fig. 5).
These sites were located on tributary streams that
ceased to flow for prolonged periods and either
became small isolated pools, or completely
dried out. We presume these extreme environ-
mental disturbances exert strong controls on fish
assemblages in the region, but that component fish
species are sufficiently resilient to return to a pre-
disturbance state once environmental conditions
become more benign or resemble the pre-distur-
bance state. We interpret the rapid return of O/E
scores to near unity following disturbance events
as evidence of this (Fig. 5). A more comprehensive
treatment of the role of environmental variability
and extreme discharge events on the stability,
persistence and resilience of fish assemblages will
be published elsewhere.

Our model developed for sites sampled in one
season only (winter), was able to accurately predict
fish assemblage structure during other seasons,
provided that they were not subject to unusually
extreme environmental conditions (e.g. extended
periods of low flow that restricted fish movement
or resulted in habitat desiccation and local fish
extinctions). To minimise the chances of commit-
ting a type I error (incorrectly diagnosing a site as
disturbed), new sites should ideally be sampled
within the same season as the reference sites used
to construct the model, and sites affected by
unusually or extreme environmental conditions
should be excluded from the assessment. The long
period of time (>3 years) between the sampling of
test and reference sites in our study introduced a
source of error that has potential to compromise
the validity of our test site predictions. However,
based on our evaluation of a limited number of
sites tracked through time, our data did not reveal
any strong annual trends in O/E scores, suggesting
that any systematic biases accruing over time were
relatively weak. Furthermore, O/E50 scores for the
five internal validation sites sampled in spring 2000
were within the reference band, indicating that the
reference model could accurately predict forward
in time. A recommended strategy to avoid any
systematic bias accruing from site differentiation
through time has been to resample a subset of
reference sites simultaneously with sampling of test
sites. These reference site re-samples can then be
incorporated into updated versions of the predic-
tive model, (Reece et al., 2001; Reynoldson et al.,
2001; Clarke et al., 2002; Barmuta et al., 2003).
Wright (1995) and Barmuta et al. (2003) cautioned
that sampling of reference sites that have recently
experienced or are currently experiencing natural
environmental extremes such as floods or droughts
should be avoided as their inclusion may make the
resulting model insensitive to detecting human
impacts. The same principle should also apply to
the sampling of test sites. Re-sampling a subset of
reference sites over consecutive years could also
provide an opportunity to detect any trends or
other systematic changes in species composition
related to long-term cyclic phenomena such as
El-Nino cycles (Mol et al., 2000; Puckridge et al.,
2000; Metzeling et al., 2002; Barmuta et al., 2003)
or climate change (Meyer et al., 1999; Mingelbier
et al., 2001).
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Predictions of fish assemblage composition at
the 48 test sites subject to known gradients of
disturbance suggested that observed deviations
from expected species composition may be an
effective indicator of aquatic ecosystem health, as
illustrated by the associations between anthropo-
genic disturbance variables and individual species
presence or absence and summary O/E50 scores.
Human impacts on local fish assemblages are
likely to be scale dependent, and potentially
affected by processes operating at both local scales
(e.g. riparian and in-stream habitat degradation)
and landscape scales (e.g. agricultural runoff from
upstream areas and artificial barriers downstream)
(Roth et al., 1996; Allan et al., 1997; Stauffer
et al., 2000). The results of the present study add
weight to this viewpoint, as fish assemblage O/E50

scores and individual species presence or absence
were associated with disturbance variables
describing surrounding catchment land use, water
quality and in-stream habitat degradation.

As our test site data was collected on a single
sampling occasion, we knew nothing about the
magnitude of temporal variation in fish assem-
blages at these potentially disturbed sites relative
to reference sites least affected by human activity.
Several studies have shown that fish assemblages
at anthropogenically disturbed sites are more
variable though time than assemblages at undis-
turbed reference sites (Karr et al., 1987; Schlosser,
1990; Taylor et al., 1996). This may be related to
greater variability in physical habitat structure at
disturbed sites (e.g. Paller, 2002). Further investi-
gation is required to evaluate levels of temporal
variability in fish assemblages at sites subject to
varying intensities of human disturbance, as this
would provide useful information on the power
and sensitivity of indicators based on these data. It
is desirable that stream biomonitoring programs
incorporate temporal assessments as changes in
biotic assemblages over time that exceed the range
of normal variability, together with the direction
of those changes, can improve the confidence in a
site assessment and indicate whether a site is
recovering or deteriorating (Linke et al., 1999;
Townsend & Riley; 1999; Paller, 2002).

We concur with Joy & Death (2000, 2002,
2003) that a multivariate predictive modelling ap-
proach based on accurately defining the reference

condition for fish species composition can be used
effectively for broad scale monitoring in catch-
ments experiencing the common range of human
disturbances (catchment land use and associated
local riparian, in-stream habitat and water quality
degradation). From such initial assessments of
stream health it is possible to flag sites for more
detailed evaluation and diagnosis of options for
remediation. Our approach may not be sufficiently
sensitive to use in situations requiring compliance
monitoring, unless the targets for compliance are
particular species presence/absence patterns at
various spatial scales. We recommend the use of a
wider suite of bioassessment tools to sharpen the
evaluation of sites in relation to compliance targets
and to provide broader evaluations of stream
health based on fish. These could include indica-
tors based on the relative abundance of alien
species (e.g. Kennard et al., 2005), and many other
attributes of fish assemblage structure and func-
tion (e.g. defined on the basis of habitat use,
reproductive style, trophic position and environ-
mental tolerances) (Karr et al., 1986; Fausch
et al., 1990; Simon, 1999, 2003). The use of mul-
tivariate predictive models in river bioassessment
has been criticised because of their ‘‘inherent sta-
tistical complexity’’ and a perceived difficulty in
conveying outputs to managers and the public
(Gerritsen, 1995; Fore et al., 1996). We suggest
that the accuracy and precision of bioassessment
results is of primary importance, irrespective of the
complexity of the statistical procedures necessary
to obtain them. Furthermore, we agree with those
who suggest that the outputs from the multivariate
predictive models (lists of species expected and
observed and an overall summary of the match
between the two lists – O/E) are conceptually
simple methods for summarising the biotic
assemblage at a given test site and the degree of
departure from the expected condition and hence,
by implication, ecosystem health. Provided the
expected condition for both types of data can be
accurately defined, the use of a combination of
multivariate and multimetric approaches would be
ideal as the two approaches convey different but
complementary information about the status of
the biota in question (Norris, 1995; Reynoldson
et al., 1997; Johnson, 2000) and hence, the health
of the aquatic ecosystem.
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