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A dynamic combined fate and food web model was developed to estimate the food web transfer of chemicals
in small aquatic ecosystems (i.e. ponds). A novel feature of the modeling approach is that aquatic macro-
phytes (submerged aquatic vegetation) were included in the fate model and were also a food item in the
food web model. The paper aims to investigate whether macrophytes are effective at mitigating chemical ex-
posure and to compare the modeling approach developed here with previous modeling approaches recom-
mended in the European Union (EU) guideline for risk assessment of pesticides. The model was used to
estimate bioaccumulation of three hypothetical chemicals of varying hydrophobicity in a pond food web
comprising 11 species. Three different macrophyte biomass densities were simulated in the model experi-
ments to determine the influence of macrophytes on fate and bioaccumulation. Macrophytes were shown
to have a significant effect on the fate and food web transfer of highly hydrophobic compounds with log
KOWN=5. Modeled peak concentrations in biota were highest for the scenarios with the lowest macrophyte
biomass density. The distribution and food web transfer of the hypothetical compound with the lowest hy-
drophobicity (log KOW=3) was not affected by the inclusion of aquatic macrophytes in the pond environ-
ment. For the three different hypothetical chemicals and at all macrophyte biomass densities, the
maximum predicted concentrations in the top predator in the food web model were at least one order of
magnitude lower than the values estimated using methods suggested in EU guidelines. The EU guideline
thus provides a highly conservative estimate of risk. In our opinion, and subject to further model evaluation,
a realistic assessment of dynamic food web transfer and risk can be obtained using the model presented here.
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1. Introduction

Several models for assessing the uptake, fate and distribution of
organic chemicals in food webs have been developed (e.g. Clark et
al., 1990; Thomann et al., 1992; Gobas, 1993; Morrison et al., 1996;
Nfon and Cousins, 2007). Common features in these models are
(i) their general applicability to large ecosystems and (ii) the use of
a steady-state assumption. These steady-state models however are
not appropriate for predicting the fate and food web uptake of chemi-
cals in small aquatic ecosystems where emissions are often periodic
(e.g. in the case of pesticides; Crossland, 1982; Rand and Clark,
2000), and chemical levels therefore fluctuate substantially over time.

Carbonell et al. (2000) addressed some of these concerns when
they developed a simple, generic and dynamic (time dependent or
unsteady-state) food web model. They demonstrated that bioaccu-
mulation becomes important for hydrophobic chemicals even if the
chemical is only moderately persistent. The approach of Carbonell et
al. (2000) has gained acceptance at the European level for registration
of pesticides by being incorporated into the Aquatic Guidance Docu-
ment on Aquatic Ecotoxicology as a higher tier study in the context
of the Directive 91/414/EEC (EU 2002).

There is interest among regulators, the agrochemical industry and
researchers in the ability of aquatic vegetation (macrophytes) to mit-
igate against chemical exposure (e.g. Maund et al., 2002; Bouldin et
al., 2004). Apart from playing a vital role in aquatic ecosystems as pri-
mary producers at the base of aquatic food webs, macrophytes may
reduce the dispersion and assist the removal of chemical from aquatic
environments by sorbing residues or trapping particulate containing
chemicals (Hinman and Klaine, 1992; Karen et al., 1998) and thus
limiting the ability of the chemical for aquatic transport or uptake
from the water-phase (reducing the exposure of aquatic animals).
Aquatic plants have also been shown to enhance the overall degrada-
tion of chemical residues facilitating the irreversible removal of toxic
compounds from contaminated water bodies (Muir et al., 1985; Hand
et al., 2001). Armitage et al. (2008) developed and applied a fugacity-
based model to describe the fate of chemicals in small ponds and spe-
cifically their mass transfer to macrophytes. They concluded that up-
take by macrophytes is particularly strong for hydrophobic chemicals
(log KOW N5.5), where the mass transfer is dominated by particle
deposition.

http://dx.doi.org/10.1016/j.scitotenv.2011.08.070
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This study describes a dynamic food web model for studying the
food web transfer of chemicals in small-scale ecosystems such as
ponds, streams, ditches or mesocosms. It represents a logical extension
of the work of Carbonell et al. (2000) because (i) uptake/elimination
parameters are derived from chemical properties using similar ap-
proaches used in large-scale steady state food web models (ii) the
transfer of chemical residues between environmental compartments
and biota is explicitly calculated using the fugacity concept (iii) aquatic
macrophytes are included as component of the aquatic ecosystem and
as a food item for food web species and (iv) a realistic pond food web is
modeled. The paper aims to investigate whether macrophytes are
effective at mitigating chemical exposure and to compare the modeling
approach developed here with the previous modeling approaches
recommended in the aforementioned EU guidance document, includ-
ing the approach of Carbonell et al. (2000).

2. Methods

The general structure of the model consists of a chemical fate
module linked to a food web bioaccumulation model representative
of a generic pond ecosystem.

2.1. Pond fate model

The pond fate model is represented by three compartments
(water, sediment and submerged vegetation) and has been previous-
ly described in Armitage et al. (2008). The water compartment is
modeled as three phases (water, suspended solids and dissolved
organic matter); the sediment compartment comprises two phases
(pore water and sediment solids) and the submerged vegetation is
modeled as a single phase. The model uses the fugacity concept
(Mackay, 2001). The different methods used to calculate fugacity
capacities (Z-values) (mol m−3 Pa−1) and transport D-values (mol
Pa-1 h-1) are explained in full in Armitage et al. (2008).

Three differential equations representing the mass distribution (or
fugacity) of the chemical in the pond were generated in fugacity for-
mat as:

VWZWdfW=dt ¼ fSDSW þ fMDMW−fWDTW ð1Þ

VSZSdfS=dt ¼ fWDWS þ fMDMS−fSDTS ð2Þ
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Fig. 1. Pond food web structure showing representative species in the
VMZMdfM=dt ¼ fWDWM þ fSDSMfMDTM ð3Þ

where V, Z, f and D are the volumes (m3), fugacity capacities
(mol m−3 Pa−1), fugacities (Pa), and the fugacity transport coeffi-
cients or D-values (mol Pa−1 h−1), respectively, the subscripts W, S
and M refer to the water, sediment and macrophyte compartments
and the subscripts on the D-values refer to different D-values for
intermedia transport (W, S and M again refer to water, sediment
and macrophytes, thus DSW refers to intermedia transport from sedi-
ment to water and so on) and total loss (i.e. DTW refers to the total
loss D value for the water compartment which comprises several pro-
cesses; degradation, volatilisation, diffusive and particulate deposi-
tion to sediments and macrophytes).

A solution of the system of equations is generated by numerical in-
tegration (with initial conditions fS=fM=0 and fW=CW0/ZW) and
the output is the change in fugacity with time for each compartment
in themodeled system. CWO is the concentration in the system follow-
ing an initial pulse release of chemical. With modification, the model
can be used to model other emission scenarios such as continuous
steady inputs or time-varied inputs. Full details of the pond fate
model are given in Armitage et al. (2008).

2.2. Pond food web model

The pond foodwebmodel comprises five trophic levels of 11 guilds
(see Fig. 1). Defining guilds rather than specific organisms was pre-
ferred because it allows a more generic representation of the pond
ecosystem. The food web is representative of a typical pond food
web, but the selection of number/type of species and guilds is arbi-
trary. The food web modeling approach is based on the model devel-
oped by Campfens and Mackay (1997) using the fugacity approach
of Mackay (2001) with the main difference that the model is dynamic
(concentrations can be calculated as a function of time) rather than
steady-state. Eleven equations of the form of Eq. (4) describing the fu-
gacity of each species in the food web were generated

ViZidfi=dt ¼ ∑ DAji fj
� �

þ DVi fW :XWi þ fS:XSið Þ−DTi fi ð4Þ

where i can be any one of eleven species; V is volume, f is fugacity and
Z is fugacity capacity, DAji is the food uptake D-value to species i
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occurring from consumption of species j in the foodweb, DVi is the res-
piration D-value, xWi and xSi are the proportion of water columnwater
and sediment pore-water respired by organism i. DTi is the sum of the
loss D-values for organism i (includes respiration, egestion, metabo-
lism and growth dilution). A full description of the methods used
to estimate Z- and D-values for the food web model is given in the
Supplementary content.

The abiotic fugacities generated from Eqs. (1)–(3) are used as
input to drive the food web model to give fugacities or concentrations
in species as a function of time (Eq. (4)), thus quantifying the time re-
sponse characteristics of the system. Mass balance checks were per-
formed on the chemical in the model compartments and no mass
leakage was observed.

The combined fate and food web model was implemented in
Microsoft Office Excel® (Visual Basic for Applications (VBA) 6.5®
v.1053). Integration was performed using a simple Euler method pro-
grammed in VBA, which proved to be mathematically stiff (stable) for
all model simulations conducted. To ensure stability an integration
time step was chosen that was 5% of the shortest half-time for trans-
port and transformation and the stability of the result checked by de-
creasing the time step systematically as described in Mackay (2001).
The equations included in the Supplementary content allow implemen-
tation of the model in any model platform. The model and model code
are freely available from the corresponding author on request.

2.3. Pond environmental characteristics

Required parameters for the hypothetical pond were either as-
sumed or obtained from the literature. Parameters included compart-
ment surface area (m2) and depth (m), fraction of organic carbon and
the concentration of particulates in water (g particulates m-3), vol-
ume of water, sediment and submerged vegetation (m3) leaf area
index (LAI) (m2 leaf m-2 water) and area of vegetation (m2). A sum-
mary of the input parameters used for the model simulations are pre-
sented in Table S3 in the Supplementary content. The parameters are
also explained in more detail in the original publication of the pond
model (Armitage et al., 2008).

2.4. Physical–chemical properties of hypothetical chemicals

Several physical chemical properties are required to run the pond
fate and food web models in tandem. Key properties specific to the
pond fate model include for example the octanol–water partition co-
efficient (KOW) and the first-order degradation rate constants (water,
sediment and aquatic macrophytes). The pond fate model also re-
quires the loading of chemical as a pulse input at time zero.

We chose to assess hypothetical rather than specific chemicals pri-
marily to avoid the uncertainty and controversy associated with
selecting degradation rate constants, which can be highly variable
depending on actual field conditions. We modeled three hypothetical
chemicals (CHEM1, CHEM2 and CHEM3) which were assigned differ-
ent hydrophobicities (i.e. log KOW was set at 3 for CHEM1, 5 for
CHEM2 and 7 for CHEM3). The degradation and metabolism half-
lives for the three hypothetical chemicals were set at 55,000 h
(6.3 yr) in all media/species i.e. all chemicals were considered to be
highly persistent. Although we are aware that for modern pesticides
the assumption of high persistence is not always representative, it
helps (i) ensure that differences in fate and food web uptake for the
three chemicals are dependent only on variability in hydrophobicity
and (ii) gives us a worst-case of biomagnification in the food web
model that can be compared to the worst-case calculation used in
the EU guidelines (see Section 3.2). It should be noted that the model
can also be used to simulate real, as well as hypothetical, chemicals
that do degrade (e.g. modern pesticides). The representative physical–
chemical property data for the hypothetical chemicals required to run
the model are summarized in Table S4 in the Supplementary content.
Furthermore, to investigate the effects of the assumed degradation
rate constants on the observed fate of the selected chemicals, we also
performed a series of simulations with degradation rate constants of
55 h, 550 h and 1700 h in all abiotic media (using the same KOW).

2.5. Food web structure

Feeding relationships among the 11 representative species (Fig. 1)
were estimated based on the known behavior of the types of species
within each guild in the food web and macrophytes were included as
a food item for some species (See Table S5 and Table S6 in the Supple-
mentary content). Feeding rates and growth rates are typical values
for the different trophic positions based on Campfens and Mackay
(1997). The fractional respiration from water was set as 1.0 for species
respiring exclusively in water, zero for species respiring exclusively in
porewater or as a fraction (i.e. between 0 and 1.0) for speciesmigrating
between the water column and sediment (see Table S7 in the Supple-
mentary content).

2.6. Model application

Themodelwas applied to simulate the fate of the three hypothetical
chemicals in a pond with varying macrophyte biomass densities. We
consider three scenarios; a high biomass density (0.145 kg dry m−2

water, see Leistra et al., 2003); low biomass density (0.045 kg dry m−2

water, see Knuth et al., 1992, 2000) and medium biomass density
(0.08 kg dry m−2 water, geometric mean of the high and low biomass
densities.

In all simulations, a fixed pulse of 1 g of the hypothetical chemical
was emitted into the pond assuming the three different biomass densi-
ties. The output of interest was themodeled concentrations of the com-
pounds inwater, sediment, macrophytes and all species over the length
of the simulation (30 days).

2.7. Model sensitivity analysis

A sensitivity analysis of the fate model was carried out to assess the
effect of variation in individual input model parameters on key model
output. The predicted water concentration (after 5, 10 and 30 days of
simulation) was selected as the output to be monitored. A wide range
of model input parameters (see Table S3 and S4 in Supplementary con-
tent) were varied within the same range (±10% of their initial value)
using a Monte Carlo analysis technique. One hundred trials were run
using the Crystal Ball® software add-on (Oracle, v.11.1.1.0.00) for
Microsoft Office Excel® assuming a uniform distribution for the sam-
pling of values across the range of each input parameter. The contribu-
tion to variance in predictedwater concentrations attributable tomodel
input parameters under these assumptions are presented in Table S9.
These outputs are estimated by calculating the rank correlation coeffi-
cients between every assumption and forecast, then squaring these co-
efficients and normalizing them to 100%. We chose a relatively high
variation in input values (10%) for a model sensitivity analysis, but pre-
vious experience (MacLeod et al., 2002, and personal communication
from Macleod) with undertaking sensitivity analyses on food web
models has shown that varying inputs by either 0.1, 1 or 10% has only
a minor impact on the results.

3. Results and discussion

3.1. Influence of hydrophobicity and macrophyte biomass density on food
web bioaccumulation

The model produces a time course of concentrations in water, sed-
iments, macrophytes and all species in the food web. Concentrations
in the different species in the food web increase during the model
simulations until they peak and then decline, with the exact timing



0.00

0.20

0.40

0.60

0.80

1.00

PP1 PC1 PC2 PC3 PC4 PC5 PC6 SC1 SC2 TC TP

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n 
(m

g/
kg

 w
w

)

Food web species

L

M

H

Fig. 3. Peak concentrations of hypothetical compound CHEM3 in food web species. All
concentrations are normalized to the low density scenario. Normalization is performed
by adjusting the peak predicted concentration in the low density scenario to 1 mg/kg
and then using the same normalization factor to adjust the two other scenarios. L, M
and H indicate the macrophytes biomass density scenario.

5419E. Nfon et al. / Science of the Total Environment 409 (2011) 5416–5422
of the occurrence of the peak concentration dependent on both the
species' uptake/depuration rate and the fugacity capacity of the spe-
cies for the chemical (the higher the KOW the higher the fugacity ca-
pacity of the species for a given chemical). Fig. 2 shows the variation
in concentration of CHEM3 in a primary producer (PP1) and top con-
sumer (TP). Observe that PP1 immediately responds to changes in
the water phase concentration since uptake is dominated principally
by passive diffusion (Fig. 2, top). However, the larger species at higher
trophic levels (e.g. TP in bottom Fig. 2) require longer periods to re-
spond, even though dietary uptake is considered, due to the fact that
uptake and elimination kinetics have an inverse relationship with
body size (i.e. larger organisms have slower kinetics) (Hendriks et
al., 2001). Fig. 3 shows the peak concentrations of CHEM3 in food
web species normalized to the low density scenario (normalization
is performed by adjusting the peak predicted concentration in the
low density scenario to 1 mg kg−1 and then using the same normali-
zation factor to adjust the two other scenarios). Peak concentrations
in each trophic level were highest for the scenario assuming lowmac-
rophytes biomass density, and this was also observed for the other
compounds.

Fig. 4 shows the concentration of the three compounds CHEM3,
CHEM2 and CHEM1 in water. Concentrations in water are highest at
the beginning of the simulations and decline rapidly for CHEM3 and
CHEM2 and gradually for CHEM1 during the model simulations. The
influence of macrophytes on modeled peak concentrations of TP was
related to the hydrophobicity of the chemicals. Peak TP concentrations
assuming low macrophytes density were approximately two times
higher than the high macrophytes biomass density scenario for CHEM3
with log KOW=7 (Table S8). For CHEM1with log KOW=3, peak concen-
trations assuming low macrophytes density were approximately equal
to the high macrophytes biomass density scenario (Table S8).

The predicted concentrations in water of CHEM3 and CHEM2 are
affected by the assumed biomass density and decline most rapidly
under the assumption of high biomass density. Calculated dissipation
half-lives (DT50) (note: dissipation includes all possible loss processes)
for the different biomass densities ranged from 1 to 3 d for CHEM3 and
Fig. 2.Model predicted concentrations of CHEM3 in a primary producer (PP1) and a top
consumer (TP) in mg/kg wet weight. L, M and H indicate the macrophytes biomass
density scenario.
CHEM2. This behavior is due to the fact that these substances associate
extensively with suspended solids and were therefore removed from
the water column via particle settling to macrophytes and sediments
(see Figs. S2 and S3 in the Supplementary content). Conversely, the pre-
dicted concentration of CHEM1 in water (top of Fig. 4), and macro-
phytes and sediment (Fig. S4 in Supplementary content) remain
relatively unchanged. Dissipation from the water compartment was
much slower (DT50N30 d) because particle dynamics are much less
effective at transporting this chemical out of the water column. This
behavior reflects the fact that CHEM1 is predominantly in the dissolved
phase of the water column and the influence of macrophytes biomass
density is also low. In more realistic assessments, degradation in
the water column will likely dominate the dissipation kinetics since
most current-use pesticides are far less persistent than assumed here
(Wauchope et al., 1992; Augustijn-Beckers et al., 1994).

KOW is an important factor controlling the partitioning of chemicals
in the environment and uptake by aquatic species. Degradation (abi-
otic and biotic) exerts an important influence counteracting accumu-
lation and can substantially reduce concentrations throughout the
food web in absolute terms if the reaction rate constants are of suffi-
cient magnitude (see Table S8 in Supplementary content). However,
the results of the simulations performed using the same KOW and
shorter, more realistic degradation half-lives for the pond media (i.e.
water, sediments andmacrophytes) indicated similar patterns in rela-
tive terms to those presented above using much longer degradation
rate constants of 55,000 h for the compounds (see Fig. 5). This finding
is important as it demonstrates that the relative patterns describing
the environmental fate of the compounds investigated are not sensi-
tive to assumptions regarding degradation rate constants in water,
sediments and macrophytes (i.e. hydrophobicity remains a key driver
in aquatic systems). It is noteworthy that in this model experimentwe
did not lower the metabolism half-lives in organisms, which would
additionally lower the uptake in the food web and top predator.

The influence ofmacrophyte density onmodel output can be under-
stood by considering the two processes (diffusive exchange between
water and macrophytes and particle deposition to macrophytes) used
to model uptake and elimination of chemicals by aquatic macrophytes
(see model description in Armitage et al., 2008). The higher the KOW

of a chemical the faster the uptake rate (or the slower the elimination
rate) and the larger the amount sequestered in macrophytes. As
reported in Armitage et al. (2008), passive diffusion and particle depo-
sition are comparable for chemicals with log KOW up to 5.5, after which
point deposition begins to strongly dominate. As KOW increases, there is
a greater tendency for the macrophytes to bioconcentrate the chemical
in thewater column, butmore importantly formass transfer via particle
deposition, leading to an increased proportion of the mass of chemical

image of Fig.�3


Fig. 4. Simulated dynamics of CHEM3, CHEM2 and CHEM1 in water (CW is the total
concentration i.e. dissolved+particle bound). H, L and M indicate the macrophytes
biomass density scenario.
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being associated with macrophytes. Thus it is apparent that both pas-
sive diffusion and mass transfer of chemical to macrophytes predomi-
nantly control the fate of the hydrophobic compounds with high log
KOW (5–7) in the model environment. For chemicals with relatively
low log KOW (log KOW=4) there is no strong tendency for macrophytes
to bioconcentrate the compound through passive diffusion nor does
particle deposition result in substantial mass transfer. In addition, the
volume of the macrophytes compartment in the present model was at
least 3 orders of magnitude smaller than the volume of the water
column. Accordingly for CHEM1, the mass of chemical associated with
macrophytes is negligible in comparison to the water column and
sediments (see Fig. S5 in Supplementary content).

It is possible that some chemicals may sorb more strongly to mac-
rophytes than estimated using absorption models based on KOW (e.g.
they adsorb strongly) (Hand et al., 2001). The algorithm used by the
model to estimate KOC from KOW was recently shown to be in good
agreement with experimental values for neutral organic compounds
(Niederer et al., 2006). However, if the required input parameters
are available, we recommend the use of poly-parameter linear free
energy relationships (p,p-LFERs) (e.g. based on Abraham-type LFERs;
Platts and Abraham, 2000) for more polar compounds since it is likely
that KOC is underestimated by our modeling approach (Niederer et al.,
2006). Regardless, the fatemodel output suggests that the distribution
of compoundswith log KOW≤4 (log KOC≤3.6) is not influenced by the
presence of macrophytes (Armitage et al., 2008). Many persistent
organic pollutants (POPs) are strongly hydrophobic and we would
therefore expect the fate and transport of such compounds in aquatic
systems to be influenced to some extent by the presence of macro-
phytes. These compounds may also be more practical to use in labora-
tory and field-studies to evaluate this model further since degradation
tends to be more limited.

It is also important to recognize that the conclusions of this study
refer to the influence of macrophytes on the distribution of chemicals
between the components of the abiotic system only. Macrophytes can
potentially influence chemical fate indirectly as well through (i) alter-
ing water pH due to photosynthetic activity and (ii) providing a sub-
strate for microbial communities. Both of these factors would tend to
increase degradation of susceptible chemicals in the system. For exam-
ple, it has been observed that photosynthetic activity can elevate the pH
of natural waters above 9 during peak sunlight hours (Prins et al., 1980;
Kersting and Van den Brink, 1997), potentially influencing the rate of
base-catalyzed hydrolysis of susceptible chemicals such as azinphos-
methyl. The degradation half-life of this compound declines from
approximately 28 days at pH 8.6 to 2.5 days at pH 9.6 (Heuer and
Yaron, 1974). In this context, higher macrophyte biomass densities

image of Fig.�5
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could cause larger alterations to the physical/biological environment
the chemical experiences resulting in enhanced degradation in compar-
ison to water bodies with low andmedium biomass density. For hydro-
phobic chemicals, it can be argued that these processes are unlikely to
change the basic patterns of fate behavior reported here since the low-
est modeled concentrations are found in high macrophytes biomass
density scenarios already. For more water-soluble chemicals (e.g.
azinphos-methyl), these processes could possibly result in greater dif-
ferences between biomass density scenarios. However, specific data
would be required to developmodel scenarios allowing for more quan-
titative assessments of the influence of these processes.

The influence of the varied input parameters on the predicted
water concentration of the hypothetical chemicals is presented in
Table S9 of the Supplementary content. The values (%) represent the
contribution of the varying parameter to the variance of the selected
output parameter (this is the standard way of representing input sen-
sitivity in the Oracle Crystal Ball Software package and is a relative
measure of sensitivity). The results show that the predicted water
concentration was most sensitive to KOC, fraction of organic carbon
in sediment and the sediment deposition mass transfer coefficient.
For CHEM2 and CHEM3, the leaf area index of macrophytes was also
a sensitive parameter. The sorption coefficient and the sediment de-
position mass transfer coefficient determine the proportion of chem-
ical that remains in the water column. Increasing KOC decreases the
amount of chemical in solution reflected in the slightly lower contri-
bution from KOC for CHEM1 compared to CHEM2 and CHEM3. The
model predictions for CHEM2 and CHEM3, which are more hydropho-
bic, were also sensitive to the biomass of macrophytes per water sur-
face area and the leaf area index of macrophytes because increasing
the KOW of the chemical results in a faster uptake and a slower elim-
ination by macrophytes thus decreasing the amount of chemical in
the water column. Note that these results are based on simulations
with negligible degradation rate constants; model output will be-
come increasingly sensitive to assumed degradation rate constants
as higher values more representative of modern pesticides are used
(i.e. when degradation becomes a dominant fate process).

In terms of the broader relevance to pesticides and in a regulatory
perspective, it is interesting to note that many current-use pesticides
are not sufficiently hydrophobic to be greatly influenced by the pres-
ence of macrophytes in a pulse exposure (i.e. they are more similar to
the compound CHEM1). For example, less than 5% of the compounds
on the SCS/ARC/CES Pesticides Properties Database (Wauchope et al.,
1992; Augustijn-Beckers et al., 1994) have log KOWN5.5, while the
median value is ~3.1. Some modern pesticides (e.g. pyrethroids such
as deltamethrin) are hydrophobic and macrophyte sorption is thus
relevant for them. As noted above, modern pesticides are also typically
much more degradable and thus food web uptake will be limited com-
pared to the hypothetical highly persistent chemicals considered here.

3.2. Comparison to previous modeling approaches and implications for
risk assessment

The concentration at the top of the food web (for the tertiary con-
sumer and the top predator) is a relevant metric for assessing the ex-
posure of fish eating birds and terrestrial mammals that feed at the
top of aquatic food webs. The EU guideline for risk assessment of pes-
ticides sets out a fast and expedient procedure to estimate a worst
case exposure of fish eating birds and mammals. According to
this guideline, the maximum concentration attainable in a fish
species (CFmax, mg kg−1) in higher tier risk assessment may be esti-
mated as

CFmax ¼ CWiBCF ð5Þ

where BCF is the theoretical bioconcentration factor calculated from the
KOW and lipid fraction (LF) (using BCF=LFKOW) and CWi is the dissolved
concentration of the pesticide (mg L−1). It is therefore assumed that the
aquatic species achieves instantaneous equilibriumwith the initial con-
centration in water and the compound is not metabolized (i.e. is highly
persistent). However, based on the rate constants estimated in
the model, the time to reach near steady state (95%) concentrations
(t95% SS=3/∑kelimination) assuming a constant water concentration
(for CHEM3 and high macrophytes density scenario) is approximately
930 and 1100 days for the tertiary consumer and top predator respec-
tively (assuming negligible metabolism) compared to approximately
10 and 6 days for PP1 (e.g. phytoplankton) and PC1 (e.g. zooplankton)
respectively. The rapid dissipation of CHEM3 from the water column
therefore limits the peak concentration achieved by the larger species
in the food web. It should also be noted that if we had assumed
some metabolism for the three hypothetical chemicals, as is more
typical e.g. for modern pesticides, we would expect even faster dissipa-
tion. Assuming high persistence allows us to examine the worst-case
exposure.

For the three different hypothetical chemicals and at all macrophyte
biomass densities, values for CFmax estimated according to EU guide-
lines using Eq. (5) were many times higher thanmodel maximum esti-
mated peak concentrations (PCFmax) in the 11 food web species values.
For example, CFmax for CHEM3 in the tertiary consumer (TC) and top
predator (TP) were approximately 55–110 and 13–20 times respective-
ly higher than PCFmax. Conversely, the model previously developed by
Carbonell et al. (2000) predicted that top predators are exposed to
higher concentrations than estimated using CFmax in Eq. (5). Carbonell
et al. (2000) reason that food web transfer was not considered in
Eq. (5) and therefore the equation used in the EU guidelines underesti-
mates risk. However, our reported PCFmax takes into account the contri-
bution from food web transfer and contrary to the findings of Carbonell
et al. (2000) estimates PCFmax values that are consistently lower than
CFmax from Eq. (5). We reason that the dissipation of chemicals from
the water column limits the theoretical peak concentration CFmax

from being achieved. On further examination, the modeling approach
of Carbonell et al. (2000), unlike our model, does not mechanistically
model the distribution and dissipation of chemical in the water col-
umn. Instead the model uses overall dissipation half-lives for chem-
ical in the water column and bottom sediments. The model does not
explicitly estimate phase distribution and therefore the “available” dis-
solved concentrations. Instead, these concentrations must be directly
entered by the user. Furthermore, the influence of macrophytes on
reducing exposure is neglected. We believe that by mechanistically
modeling both the fate and food web accumulation our combined
model more accurately represents the food web accumulation in small
aquatic systems than the simpler Carbonell et al. approach.

The implication of the findings of this modeling study is that using
CFmax from Eq. (5) in risk assessment would result in a large overes-
timation of the risk of fish eating birds and terrestrial mammals that
feed from the aquatic environment, rather than an underestimation
as suggested by Carbonell et al. (2000). The method in the EU guide-
line thus provides a highly conservative estimate of risk. In our opin-
ion, and subject to further model evaluation, a realistic assessment of
dynamic food web transfer can be obtained using the model pre-
sented here. To date it has only been possible to use the food web
model developed here for evaluative model scenarios, although we
were able to test the fate model against real datasets (see Armitage
et al., 2008). We are aware that datasets in which concentrations in
pond species are measured are generated during pesticide registra-
tion by pesticide manufacturers (although these are often confiden-
tial). These datasets if made available in the public domain could be
used to evaluate the accuracy of our food web model, and thus au-
thenticate its use as a higher-tier regulatory tool for risk assessment.
The model can additionally be a useful tool for interpreting laborato-
ry, mesocosm and field measurements, especially for assessing the
aquatic behavior of pesticides that associate with macrophytes i.e.
those with high KOW values.
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