Przyk³ady interaktywnych symulacji
dotycz¹cych ochrony œrodowiska
1. https://worldpopulationhistory.org/map/1/mercator/1/0/25/
2. https://www.ined.fr/en/everything_about_population/population-games/tomorrow-population/
3. https://ourworldindata.org/meat-and-seafood-production-consumption
4. https://climate.nasa.gov/interactives/climate-time-machine
5. https://www.climateinteractive.org/
6. https://scied.ucar.edu/interactives
Przyk³ady publikacji wykorzystuj¹cych
modelowanie w ochronie œrodowiska
1.
Heesterbeek, H., R. M. Anderson, V.
et al. (2015) Modeling infectious
disease dynamics in the complex landscape of global health. Science
347:aaa4339.
2.
Hertwich, E. G., T. Gibon, E. A. et
al. (2015) Integrated life-cycle
assessment of electricity-supply scenarios confirms global environmental
benefit of low-carbon technologies. Proceedings of the National Academy of
Sciences 112:6277-6282.
3.
Lelieveld, J., J. S. Evans, M. Fnais,
D. Giannadaki, and A. Pozzer. (2015) The
contribution of outdoor air pollution sources to premature mortality on a
global scale. Nature 525:367.
4. Wilcox, C., E. Van Sebille, and B. D. Hardesty. (2015) Threat of plastic pollution to seabirds is
global, pervasive, and increasing. Proceedings of the National Academy of
Sciences 112:11899-11904.
5.
Arntzen
J. W. (2006) From descriptive to predictive distribution models: a working
example with Iberian amphibians and reptiles. Frontiers in Zoology 3:8
6. Azuma T., Nakada N., Yamashita N., Tanaka H. (2015) Prediction, risk and control of
anti-influenza drugs in the Yodo River Basin, Japan
during seasonal and pandemic influenza using the transmission model for infectious
disease. Science of the Total Environment 521–522, pp. 68–74
7. Brown M.
L., Donovan T. M., Schwenk W. S., Theobald D. M.
(2014) Predicting impacts of future
human population growth and development on occupancy rates of forest-dependent
birds. Biological Conservation. 170 pp. 311–320
8. Chang
F-J., Tsai Y-H., Chen P-A., Coynel A., Vachaud G. (2015) Modelling
water quality in an urban river using hydrological factors e Data driven
approaches. Journal of Environmental Management 151, pp. 87-96
9. Eisenberg
et al (2012). In-roads to the spread of antibiotic resistance: regional patterns
of microbial transmission in northern coastal Ecuador. J. R. Soc.
Interface 9 1029-1039.
10.
Fechter D., Storch I. (2014) How many wolves (Canis lupus) fit into Germany? The role of assumptions in predictive
rule-based habitat models for habitat generalists. PLoS
ONE 9(7): e101798
11. Feio M. J., Reynoldson T. B., Ferreira V., Augusto M., Graca S. (2007) A
predictive model for freshwater bioassessment
(Mondego River, Portugal). Hydrobiologia 589,pp.
55–68
12. Fernández, N., Selva, N., Yuste, C., Okarma, H., Jakubiec, Z. (2012) Brown bears at the edge: Modeling habitat constrains at the periphery of the Carpathian
population. Biological Conservation, 153, pp. 134-142.
13. Galetti M., Guevara R., Côrtes M.
C., Fadini R., Von Matter S., Leite
A. B., Labecca F., Ribeiro T., Carvalho
C. S., Collevatti R. G., Pires
M. M., Guimarães Jr. P. R., Brancalion P. H., Ribeiro M. C., Jordano
P. (2013) Functional extinction of birds
drives rapid evolutionary changes in seed size. Science 30, pp. 1086 – 1090
14.
Gerland P., Raftery A. E., Ševèíková H., Li N., Gu D., Spoorenberg T., Alkema L., Fosdick B. K., Chunn J., Lalic N., Bay G., Buettner T, Heilig G. K., Wilmoth J. (2014) World population stabilization unlikely this century. Science 346
(6206), pp. 234-237 (+ supplementary materials)
15. Kennard M. J., Pusey B. J., Arthington A. H., Harch B. D.,
Mackay S. J. (2006) Development and application
of a predictive model of freshwater fish assemblage composition to evaluate
river health in eastern Australia. Hydrobiologia
572, pp. 33–57
16. Latham M.
C., Latham A. D. M., Webb N. F., Mccutchen N. A., Boutin S. (2014) Can
occupancy abundance models be used to monitor wolf abundance? PLoS ONE 9(7), e102982
17. Nfon, E., Armitage, J.M., Cousins, I.T. (2011) Development
of a dynamic model for estimating the food web transfer of chemicals in small
aquatic ecosystems. Science of the Total Environment, 409 (24), pp.
5416-5422.
18. Plotkin J. B.,
Potts M. D. , Yud D. W., Bunyavejchewin
S., Conditf R., Fosterg R.,
Hubbellh S., LaFrankie J., Manokaran N., Leek
H-S., Sukumar R., Nowak M. A., Ashton P. S. (2001) Predicting species diversity in tropical
forests. PNAS 98 (2), pp. 10850–10854
19. Ron, S. R.
(2005) Predicting the distribution of
the amphibian pathogen Batrachochytrium dendrobatidis
in the New World. Biotropica, 37(2),
209-221.
20. Sahlean, T. C., Gherghel, I., Papeº, M., Strugariu, A., & Zamfirescu, ª. R. (2014) Refining climate change projections for organisms with low dispersal
abilities: a case study of the Caspian whip snake. PloS
one, 9(3), e91994.
21. Samso R., Blazquez J., Agullo N., Grau J., Torres R., Garcia J. (2015) Effect of bacteria
density and accumulated inert solids on the effluent pollutant concentrations
predicted by the constructed wetlands model BIO PORE. Ecological
Engineering 80. pp.172–180
22. Santos,
X., Brito, J. C., Caro, J., Abril, A. J., Lorenzo, M., Sillero,
N., & Pleguezuelos, J. M. (2009). Habitat suitability, threats and
conservation of isolated populations of the smooth snake (Coronella austriaca) in the southern Iberian
Peninsula. Biological Conservation, 142(2), 344-352.
23. Sasina N. V., Smith J. T., Kudelsky
A. V., Wright S. M. (2007) ‘‘Blind’’
testing of models for predicting the 90Sr activity concentration in river
systems using post-Chernobyl monitoring data. Journal of Environmental
Radioactivity 92, pp. 63e71
24. Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B. (2000) Global water resources:
Vulnerability from climate change and population growth. Science, 289
(5477), pp. 284-288.